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1. INTRODUCTION

The notion of amenability was introduced in 1929 by J. von Neumann [68] in order to

explain the Banach-Tarski paradox. A countable discrete group Γ is amenable if there

exists a left-invariant mean ϕ : `∞(Γ) → C. The class of amenable groups is stable

under subgroups, direct limits, quotients and the free group F2 on two generators is

not amenable. Knowing whether or not the class of amenable groups coincides with the

class of groups without a nonabelian free subgroup became known as von Neumann’s

problem. It was solved in the negative by Ol’shanskii [50]. Adyan [1] proved that the

free Burnside groups B(m,n) with m generators, of exponent n (n ≥ 665 and odd) are

nonamenable. Ol’shanskii and Sapir [51] also constructed examples of finitely presented

nonamenable groups without a nonabelian free subgroup.

Two free ergodic probability measure-preserving (pmp) actions Γ y (X,µ) and

Λ y (Y, ν) of countable discrete groups on nonatomic standard probability spaces are

orbit equivalent (OE) if they induce the same orbit equivalence relation, that is, if there

exists a pmp Borel isomorphism ∆ : (X,µ) → (Y, ν) such that ∆(Γx) = Λ∆(x), for

µ-almost every x ∈ X. Despite the fact that the group Z admits uncountably many

non-conjugate free ergodic pmp actions, Dye [13, 14] proved the surprising result that

any two free ergodic pmp actions of Z are orbit equivalent. Moreover, Ornstein and

Weiss [52] (see also [11]) proved that any free ergodic pmp action Γ y (X,µ) of any

infinite amenable group is always orbit equivalent to a free ergodic pmp Z-action on

(X,µ). On the other hand, results of [62, 12, 27] imply that any nonamenable group

has at least two non-OE free ergodic pmp actions. These results lead to a satisfying

characterization of amenability: an infinite countable discrete group Γ is amenable if

and only if Γ admits exactly one free ergodic pmp action up to OE.
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Measurable-group-theoretic solution to von Neumann’s problem

The first result we discuss in this paper is a positive answer to von Neumann’s

problem in the framework of measured group theory, due to Gaboriau and Lyons [22].

Measured group theory is the study of countable discrete groups Γ through their pmp

actions Γ y (X,µ). We refer to [18] for a recent survey on this topic.

To any free pmp action Γ y (X,µ), one can associate the orbit equivalence relation

R(Γ y X) ⊂ X ×X defined by

(x, y) ∈ R(Γ y X)⇐⇒ ∃g ∈ Γ, y = gx.

For countable discrete groups Γ and Λ, we say that Λ is a measurable subgroup of Γ and

set Λ <ME Γ if there exist two free ergodic pmp actions Γ y (X,µ) and Λ y (X,µ)

such that R(Λ y X) ⊂ R(Γ y X). Denote by Leb the Lebesgue measure on the

interval [0, 1] and let Γ y ([0, 1],Leb)Γ be the Bernoulli shift. Gaboriau and Lyons [22]

obtained the following remarkable result.

Theorem. — Let Γ be any nonamenable countable discrete group. Then there exists

a free ergodic pmp action F2 y ([0, 1],Leb)Γ such that

R(F2 y [0, 1]Γ) ⊂ R(Γ y [0, 1]Γ).

In particular, we get that F2 <ME Γ. This theorem has important consequences in

the theory of group von Neumann algebras.

Corollary. — Let Γ, H be countable discrete groups such that Γ is nonamenable and

H is infinite. Then the von Neumann algebra L(H o Γ) of the wreath product group

H o Γ := (
⊕

Γ H) o Γ contains a copy of the von Neumann algebra L(F2) of the free

group.

The proof of Gaboriau and Lyons’ result goes in two steps that we explain below.

We refer to Section 2 for background material on pmp equivalence relations.

The first step consists in finding a subequivalence relation R ⊂ R(Γ y [0, 1]Γ) such

that R is ergodic treeable and non-hyperfinite. This is a difficult problem in general.

By Zimmer’s result [69, Proposition 9.3.2], it is known that R(Γ y [0, 1]Γ) contains

an ergodic hyperfinite subequivalence relation. When Γ is finitely generated, another

way to obtain subequivalence relations of R(Γ y [0, 1]Γ) is by considering invariant

percolation processes on the Cayley graphs of Γ (see Section 3). This beautiful idea

is due to Gaboriau [19]. Gaboriau and Lyons exploit this idea and give two different

proofs of the first step, one using random forests, the other using Bernoulli percolation.

They also suggest at the end of their article that the free minimal spanning forest [42]

could serve as the desired treeable non-hyperfinite subequivalence relation R. It is this

approach that we will present in this paper. Sections 2 through 7 are entirely devoted

to giving a self-contained proof of this first step. The proof is a combination of ideas

and techniques involving probability, ergodic theory, geometric group theory and von

Neumann algebras theory.
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In the second step, one uses Gaboriau’s theory of cost [21] (see also [36]). An ergodic

treeable non-hyperfinite equivalence relation has cost greater than 1 by [21, Théorème

IV.1]. From the first step, one can then construct an ergodic treeable subequivalence

relation R ⊂ R(Γ y [0, 1]Γ) with cost ≥ 2. Finally, one applies Hjorth’s result [26] in

order to get a subequivalence relation of R(Γ y [0, 1]Γ) induced by a free ergodic pmp

action of F2.

Orbit equivalence theory of nonamenable groups

As mentioned before, any nonamenable group admits at least two non-OE free ergodic

pmp actions [12, 27, 62]. Over the last few years, the following classes of nonamenable

groups have been shown to admit uncountably many non-OE free ergodic pmp actions:

property (T) groups (Hjorth [27]); nonabelian free groups (Gaboriau and Popa [23]);

weakly rigid groups(1) (Popa [59]); nonamenable products of infinite groups (Popa [55],

see also [46, 30]); mapping class groups (Kida [38]). We refer to [5, 24, 69] for earlier

results on this topic.

In his breakthrough paper [28], Ioana proved that every nonamenable group Γ that

contains F2 as a subgroup admits uncountably many non-OE free ergodic pmp actions.

As we will see in Section 9, Ioana’s proof goes in two steps that we outline. Regard

F2 < SL2(Z) as a finite index subgroup and let F2 act on Z2 by matrix multiplication.

By results of Kazhdan-Margulis [34, 44], the pair (Z2oF2,Z
2) has the relative property

(T). Write α : F2 y (T2, λ2) for the corresponding pmp action. The first step (see

Theorem 9.1) shows that in every uncountable set of mutually OE actions of Γ whose

restrictions to F2 admit α as a quotient, we can find two actions whose restrictions to

F2 are conjugate. The proof is based on a separability argument which uses in a crucial

way the fact that the action α : F2 y T2 is rigid in the sense of Popa [60]. Note that

the action α was already successfully used by Gaboriau and Popa [23] in order to show

that the free groups Fn have a continuum of non-OE actions. The second step consists

in using the co-induction technique (see Section 8) in order to construct uncountably

many actions of Γ whose restrictions to F2 are non-conjugate. Altogether, one obtains

uncountably many non-OE actions of Γ.

Gaboriau and Lyons’ result opened up the possibility that the condition “Γ contains

F2” in Ioana’s theorem could be replaced by the natural condition “Γ is nonamenable”.

In order to do so, one had to generalize the second step of Ioana’s proof, that is, one

needed a more general co-induction technology for group/measurable subgroup rather

than group/subgroup. Epstein [15] obtained such a construction (see Section 8). Since

the first step of Ioana’s proof remains unchanged for Γ containing F2 as a measurable

subgroup, Epstein [15] obtained the following result.

Theorem. — Every nonamenable group Γ admits uncountably many non-OE free

ergodic pmp actions.

(1)A countable Γ is weakly rigid in the sense of Popa if it admits an infinite normal subgroup Λ < Γ

such that the pair (Γ,Λ) has the relative property (T).



1039–04

Since then, this result has been generalized in two ways. First, recall that any free

ergodic pmp action Γ y (X,µ) gives rise to a finite von Neumann algebra L∞(X)o Γ

via the group measure space construction of Murray and von Neumann (see Section 6).

Two free ergodic pmp actions Γ y (X,µ) and Λ y (Y, ν) are W∗-equivalent if the von

Neumann algebras L∞(X)oΓ and L∞(Y )oΛ are ∗-isomorphic. Since the group measure

space construction only depends on the orbit structure of the action [63] (see also [17]),

it follows that orbit equivalence implies W∗-equivalence. Using Popa’s concept of rigid

inclusion of von Neumann algebras [60], Ioana [28] strengthened the previous result by

showing that any nonamenable group Γ admits a continuum of W∗-inequivalent free

ergodic pmp actions. Next, given any nonamenable group Γ, denote by A0(Γ, X, µ) the

standard Borel space of all free mixing pmp actions of Γ on (X,µ) (see [35]). On the

space A0(Γ, X, µ), consider the Borel equivalence relation OE defined by (a, b) ∈ OE

if and only if the actions a and b are orbit equivalent. Epstein, Ioana, Kechris and

Tsankov [32] proved that OE on the space A0(Γ, X, µ) cannot be classified by countable

structures.

We point out that both Ioana’s theorem and Epstein’s theorem rely on a separability

argument and therefore only provide the existence of a continuum of non-OE actions

for Γ. What about concrete examples of a continuum of non-OE actions for a given

nonamenable group Γ? Important progress has been made over the recent years. The

classes of nonamenable groups for which a concrete uncountable family of non-OE

actions is known are the following: non-abelian free groups (Ioana [29]); weakly rigid

groups (Popa [59]); nonamenable products of infinite groups (Popa [55]); mapping class

groups (Kida [38]). We also refer to Popa and Vaes [61] for further results regarding

this question.
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2. MEASURE-PRESERVING EQUIVALENCE RELATIONS

Let (X,µ) be a nonatomic standard Borel probability space. A countable Borel

equivalence relation R is an equivalence relation defined on the space X × X which

satisfies:

1. R ⊂ X ×X is a Borel subset.

2. For any x ∈ X, the class or orbit of x denoted by [x]R := {y ∈ X : (x, y) ∈ R} is

countable.
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We denote by [R] the full group of the equivalence relation R, that is, [R] consists in

all Borel isomorphisms φ : X → X such that graph(φ) ⊂ R. If Γ is a countable group

and (g, x) → gx is a Borel action of Γ on X, then the orbit equivalence relation given

by

(x, y) ∈ R(Γ y X)⇐⇒ ∃g ∈ Γ, y = gx

is a countable Borel equivalence relation on X. By results of Feldman and Moore [16],

any countable Borel equivalence relation arises this way. The measure µ is R-invariant

if φ∗µ = µ, for all φ ∈ [R]. If this is the case, R is called a probability measure-preserving

(pmp) equivalence relation on (X,µ). If Γ y (X,µ) is a pmp action, then R(Γ y X)

is a pmp equivalence relation. From now on, we will always assume that R is a pmp

equivalence relation. Let S be a pmp equivalence relation on the nonatomic standard

Borel probability space (Y, ν). We say that R and S are orbit equivalent if there exists

a pmp Borel isomorphism ∆ : (X,µ)→ (Y, ν) such that

(x, y) ∈ R ⇐⇒ (∆(x),∆(y)) ∈ S.

For any non-null Borel subset A ⊂ X, define µA(B) = µ(B)/µ(A), for all Borel

subsets B ⊂ A. Then (A, µA) is a standard Borel probability space. The restricted

equivalence relation R ∩ (A × A) is simply denoted by R|A. It is a pmp equivalence

relation on (A, µA). The infinite locus of R is the Borel subset

U∞ := {x ∈ X : [x]R is infinite}.

The restricted equivalence relation R|U∞ is of type II1 or aperiodic.(2) Let Γ y (X,µ)

be a free pmp action of a countable infinite discrete group. Then the orbit equivalence

relation R(Γ y X) induced by the action Γ y X is of type II1.

For any Borel subset B ⊂ X, define the R-saturation of B by

[B]R =
⋃
x∈B

[x]R = {y ∈ X : ∃x ∈ B, (x, y) ∈ R}.

We have B ⊂ [B]R and [B]R is a measurable subset of X. We say that B ⊂ X is

R-invariant if [B]R = B. The equivalence relation R is ergodic if any R-invariant

measurable subset B ⊂ X is null or co-null. Equivalently, R is ergodic if and only if

any [R]-invariant measurable subset A ⊂ X is null or co-null.

An equivalence relation R is hyperfinite if R =
⋃
nRn, where Rn is an increasing

sequence of finite subequivalence relations, that is, every orbit of Rn is finite. If R is

hyperfinite, then R|A is still hyperfinite for every non-null Borel subset A ⊂ X. Dye

[13, 14] proved there is a unique ergodic hyperfinite II1 equivalence relation up to orbit

equivalence. It is induced by any ergodic action of Z on (X,µ). Ornstein and Weiss

[52] (see also [11]) proved that every ergodic pmp action of any infinite amenable group

induces the unique ergodic hyperfinite II1 equivalence relation.

An ergodic type II1 equivalence relation R is strongly ergodic if for every sequence of

Borel measurable subsets An ⊂ X, we have the following implication: if for all g ∈ [R],

(2)A pmp equivalence relation R is of type II1 if almost every R-class is infinite.
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we have that limn µ(An4gAn) = 0, then limn µ(An)(1 − µ(An)) = 0. A hyperfinite

equivalence relation is never strongly ergodic. Let Γ y I be any countable infinite group

Γ acting on a countable set I with infinite orbits and such that for all g 6= 1Γ, there are

infinitely many i ∈ I such that g · i 6= i. Let (Y, ν) be any non-trivial probability space

and let (X,µ) = (Y, ν)I be the product probability space. The generalized Bernoulli

shift Γ y (Y, ν)I is defined by g · (yi)i∈I = (yg−1i)i∈I . It is a free ergodic pmp action.

Moreover, when Γ is nonamenable and the action Γ y I has amenable stabilizers, the

orbit equivalence relation R(Γ y Y I) is strongly ergodic. We will use the following

characterization of strong ergodicity due to Gaboriau [18, Proposition 5.2].

Proposition 2.1. — Let R be an ergodic type II1 equivalence relation on (X,µ). Then

R is strongly ergodic if and only if for every increasing sequence Rn of subequivalence

relations such that R =
⋃
nRn, there exist n ∈ N and a non-null Borel subset A ⊂ X

such that Rn|A is ergodic.

A pmp graphing on (X,µ) is a countable family Φ = (ϕi)i∈I of measure-preserving

Borel partial isomorphisms ϕi : Ai → Bi. We denote by RΦ the smallest equivalence

relation containing {(x, ϕi(x)) : x ∈ Ai, i ∈ I}. ThenRΦ is a countable pmp equivalence

relation. We say that Φ generates the equivalence relation RΦ. The pmp graphing Φ

provides a natural connected graph structure on each class of R, called the Cayley

graph [21]. The vertices are the elements of the R-class and an oriented edge joins two

vertices x and y if x ∈ Ai and y = ϕi(x). We denote by Φ(x) the Cayley graph of [x]R.

A treeing Φ is a graphing such that µ-a.s. Φ(x) is a tree. An equivalence relation R
is treeable if there exists a treeing Φ for which R = RΦ. Any hyperfinite equivalence

relation is treeable.

The notion of cost was introduced by Levitt [39]. The cost of a pmp graphing

Φ = (ϕi)i∈I is defined as cost(Φ, µ) =
∑

i∈I µ(Ai). The cost of a pmp equivalence

relation R is then defined by

cost(R, µ) = inf{cost(Φ, µ) : Φ graphing such that R = RΦ}.

Any II1 equivalence relation R satisfies cost(R, µ) ≥ 1 by [39]. Gaboriau proved [21,

Théorème IV.1] that when R is treeable, cost(R, µ) = cost(Φ, µ), for every treeing Φ

of R. In particular when R is treeable, cost(R, µ) = 1 if and only if R is hyperfinite.

3. INVARIANT BOND PERCOLATION

This section is devoted to reviewing a few concepts involving invariant bond perco-

lation on infinite graphs. Further information on this topic may be found in the book

[41] by Lyons and Peres.
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3.1. Graph-theoretic terminology

Let G = (V,E) be an infinite graph with vertex set V and (symmetric) edge set E.

We allow multiple edges and loops. When there is at least one edge joining vertices u

and v, we say that u and v are adjacent and write u ∼ v. The degree deg v of a vertex v

is the number of edges incident with it. A graph is locally finite if deg v < ∞, for all

v ∈ V; uniformly bounded if supv∈V deg v <∞; and d-regular if deg v = d, for all v ∈ V.

A connected component of G is called a cluster. A forest is a graph whose clusters are

trees. We will always assume that the graph G is locally finite. The automorphism

group Aut(G) endowed with the pointwise convergence is locally compact. The graph

G is transitive if Aut(G) acts transitively on V and unimodular if Aut(G) is unimodular.

A finite or infinite path P = (en)n≥1 of edges en = [vn, vn+1] in G is self-avoiding if the

map n 7→ vn is one-to-one. A simple cycle is a finite self-avoiding path P = (e1, . . . , en)

which is a cycle as well. An infinite simple cycle is a bi-infinite self-avoiding path

P = (en)n∈Z.

Let Γ be a finitely generated group and S = (s1, . . . , sd) a finite generating family(3)

for Γ. Then the (right) Cayley graph G := Cay(Γ, S) is the graph with vertices V := Γ

and edges E := Γ × {1, . . . , d}. The non-oriented edge corresponding to (v, i) will be

simply denoted by [v, vsi]. The group Γ acts on its Cayley graph by left multiplication.

Note that Cay(Γ, S) is a d-regular transitive unimodular connected graph.

An infinite set of vertices V is end-convergent if for every finite subset K ⊂ G, there

is a connected component of G \ K that contains all but finitely many vertices of V .

Two end-convergent sets V and W are equivalent if V ∪W is end-convergent. An end

of G is an equivalence class of end-convergent sets.

3.2. Bernoulli bond percolation

In this subsection, we fix an infinite locally finite graph G = (V,E) with Γ < Aut(G)

a countable discrete subgroup which acts transitively on V. When G = Cay(Γ, S) is

the Cayley graph of a finitely generated group Γ, we regard Γ as a discrete subgroup of

Aut(G).

We denote by {0, 1}E the standard Borel space of all subsets of E, where we identify

a subset A ⊂ E with its characteristic function 1A. We will regard {0, 1}E as the Borel

space of all subgraphs of G with the same set of vertices V. Observe that Γ acts in

a Borel way on {0, 1}E by (g · ω)(e) = ω(g−1e), for all e ∈ E. Following [3, 4, 41], a

Γ-invariant bond percolation P on G is a Γ-invariant probability measure on {0, 1}E. The

percolation P is ergodic if the pmp action Γ y ({0, 1}E,P) is ergodic. We sometimes

regard ω as a {0, 1}E-valued random variable whose law is given by P. It is customary

to denote by C(ω; v) the cluster of ω containing the vertex v.

For any measurable subset A ⊂ {0, 1}E and any edge e ∈ E, denote by ΠeA ⊂ {0, 1}E
the measurable subset {ω ∪ {e} : ω ∈ A}. Likewise denote by Π¬eA ⊂ {0, 1}E the

measurable subset {ω − {e} : ω ∈ A}. The percolation P is insertion tolerant (resp.

(3)It means that we allow S to contain several copies of the same generator.
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deletion tolerant) if for all measurable subset A ⊂ {0, 1}E such that P[A] > 0 and all

e ∈ E, we have P[ΠeA] > 0 (resp. P[Π¬eA] > 0).

For p ∈ [0, 1], Bernoulli(p) bond percolation is the product probability measure Pp on

{0, 1}E that satisfies Pp[ω : e ∈ ω] = p. In other words, each edge of G is independently

kept (or open) with probability p and removed (or closed) with probability 1− p. The

percolation Pp is clearly invariant. If the action Γ y E has infinite orbits, then Pp is

ergodic. In particular, when G is a Cayley graph of an infinite group, Pp is ergodic. It

is easy to check that Pp is both insertion and deletion tolerant for p 6= 0 and 1.

Let P = LebE be the product probability measure on [0, 1]E where Leb denotes the

uniform (Lebesgue) measure on [0, 1]. An element of [0, 1]E gives a colored graph, with

[0, 1] as set of colors. For each p ∈ [0, 1], let πp : [0, 1]E → {0, 1}E be the Aut(G)-

equivariant map sending [0, 1]-colored graphs to {0, 1}-colored ones by only keeping the

edges colored in [0, p), that is, for every x ∈ [0, 1]E,

πp(x)(e) =

{
1 if x(e) < p

0 if x(e) ≥ p.

The standard coupling is the family (πp)p∈[0,1]. We have that (πp)∗P = Pp, for all

p ∈ [0, 1]. The event that there exists an infinite cluster in πp(x) is a tail event.

Hence, by Kolmogorov’s 0, 1-law, P[∃ an infinite cluster in πp(x)] = 0 or 1. Moreover,

for p ≤ q, the event that πp(x) has an infinite cluster is contained in the event that

πq(x) has an infinite cluster. This allows us to define the critical value pc(G) ∈ [0, 1] by

P[∃ an infinite cluster in πp(x)] =

{
0 if p < pc(G)

1 if p > pc(G).

One checks that for all p ≥ pc(G), P-a.s. pc(πp(x)) = pc(G)/p.

From now on, assume that the action Γ y E has infinite orbits, so that the percolation

Pp is ergodic. Denote by N(ω) the number of infinite clusters of ω ∈ {0, 1}E. Since

N(ω) is invariant, it follows that N(ω) is a Pp-a.s. constant function, by ergodicity of

Pp. We denote by Np ∈ N ∪ {∞} its value. Let us prove now that Np ∈ {0, 1,∞} (see

[49]). Assume that this is not the case, that is, Np ∈ N \ {0, 1}. Then there exists a

finite path P = (e1, . . . , en) in G such that

Pp[P connects two distinct infinite clusters of ω] > 0.

Denote by A this last event and let B = Πe1◦· · ·◦Πen(A). Since Pp is insertion tolerant,

Pp[B] > 0. Yet, Np takes a strictly smaller value on B than on A, which contradicts

the fact that Np is a Pp-a.s. constant function.

When G = (V,E) is a connected locally finite unimodular transitive graph, Häggström

and Peres [25] showed there is monotonicity of uniqueness: for all 0 ≤ p1 < p2 ≤ 1,

if P[∃ a unique infinite cluster in πp1(x)] = 1

then P[∃ a unique infinite cluster in πp2(x)] = 1.

This explains why the uniqueness phase is an interval and allows us to define

pu(G) = inf{p ∈ [0, 1] : there is a unique infinite cluster for Pp}.
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We have pc(G) ≤ pu(G). Stronger still, Häggström and Peres [25] proved that after

pc(G), there is no spontaneous generation of infinite clusters, “all infinite clusters are

born simultaneously”:

Theorem 3.1. — Let G = (V,E) be a connected locally finite unimodular transitive

graph. The number Np of infinite clusters in πp(x) is a P-a.s. constant function and we

have

Np =


0 for p ∈ [0, pc(G))

∞ for p ∈ (pc(G), pu(G))

1 for p ∈ (pu(G), 1].

– Moreover, for all p1 < p2, when P-a.s. πp1(x) produces at least one infinite cluster,

P-a.s. every infinite cluster of πp2(x) contains at least one infinite cluster of πp1(x).

– If P-a.s. πp(x) produces infinitely many infinite clusters, then P-a.s. all infinite

clusters of πp(x) have uncountably many ends.

– When p < 1, if P-a.s. πp(x) produces only one infinite cluster, then P-a.s. the

unique infinite cluster of πp(x) has only one end.

Lyons and Schramm [43] showed that when Bernoulli(p) bond percolation produces

a.s. at least one infinite cluster, then its infinite clusters are indistinguishable in the

following sense. Consider the Borel subset

C∞ =
{

(ω,C) ∈ 2E × 2V : C is an infinite cluster of ω
}
.

Observe that C∞ is invariant under the diagonal action of Γ. A Γ-invariant bond

percolation P on G has indistinguishable infinite clusters if for every Γ-invariant Borel

subset A ⊂ C∞, P-a.s. either for all infinite clusters C of ω, we have (ω,C) ∈ A, or for

all infinite clusters C of ω, we have (ω,C) ∈ C∞ \A. Observe that when P is moreover

ergodic, we can permute “P-a.s.” with “or”. The following result is [43, Theorem 3.3].

Theorem 3.2 (Clusters indistinguishability). — Let G = (V,E) be a unimodular tran-

sitive graph. Any Γ-invariant insertion-tolerant bond percolation on G has indistinguish-

able infinite clusters.

3.3. From percolation to equivalence relations

Let Γ be a finitely generated infinite group and S = (s1, . . . , sd) a finite generating

family for Γ. Set G = Cay(Γ, S) that we also denote G = (V,E). Let Γ y (X,µ) be a

free ergodic pmp action and denote by S := R(Γ y X) the induced orbit equivalence

relation. Let π : X → {0, 1}E be a Γ-equivariant Borel map. Then the push-forward

measure π∗µ is a Γ-invariant bond percolation on G. The following definition is due to

Gaboriau [19].

Definition 3.3. — The cluster subequivalence relation Rcl
π ⊂ S is defined by

(x, y) ∈ Rcl
π ⇐⇒

{
there exists g ∈ Γ, y = g−1x

1Γ and g are in the same cluster of π(x).
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Denote by ei the edge [1Γ, si]. Define the Borel set Xi = {x ∈ X : π(x)(ei) = 1} and

partial Borel isomorphisms ϕi = s−1
i : Xi → s−1

i (Xi). Then the family Φ = (ϕ1, . . . , ϕd)

is a pmp graphing which generates Rcl
π and Φ(x) ' C(π(x); 1Γ), for µ-almost every

x ∈ X. Denote by Uπ
∞ the infinite locus of Rcl

π , that is,

Uπ
∞ = {x ∈ X : C(π(x), 1Γ) is infinite}.

Assume now that µ-a.s. π(x) produces at least one infinite cluster. Then µ(Uπ
∞) > 0

and Rcl
π |Uπ

∞ is a type II1 equivalence relation. Moreover, on Uπ
∞, each S-class splits into

Rcl
π -classes which are in one-to-one correspondence with the infinite clusters of π(x).

It follows in particular that when µ-a.s. π(x) produces exactly one infinite cluster, the

orbit and the cluster equivalence relations do coincide on the infinite locus, that is,

Rcl
π |Uπ

∞ = S|Uπ
∞. The following observation is due to Gaboriau and Lyons [22].

Proposition 3.4 (Indistinguishability vs. ergodicity). — The percolation π∗µ has in-

distinguishable infinite clusters if and only if the equivalence relation Rcl
π |Uπ

∞ is ergodic.

Consider now Bernoulli(p) bond percolation through the standard coupling (πp)p∈[0,1].

Observe that since the action Γ y E is free, the free pmp action Γ y ([0, 1]E,P) is

conjugate to the plain Bernoulli shift Γ y ([0, 1],Leb)Γ. Let S be the corresponding

orbit equivalence relation. Simply denote by Rp the cluster equivalence relation Rcl
πp .

The family (Rp)p∈[0,1] is increasing. Moreover Rq =
⋃
p<qRp and R1 = S.

– For p < pc(G), P-almost every orbit of Rp is finite, that is, Rp is a type I equiva-

lence relation. It follows in particular that Rpc(G) is hyperfinite.

– For p > pc(G), denote by Up
∞ the (non-null) infinite locus of Rp. If P-a.s. πp(x)

produces infinitely many infinite clusters, Rp|Up
∞ has infinite index in S|Up

∞.

It is straightforward to see that clusters indistinguishability implies simultaneous

uniqueness. Indeed, simultaneous uniqueness amounts to saying that for all p1 < p2

such that P[Up1
∞ ] > 0, the Rp2|Up2

∞ -saturation of Up1
∞ is equal to Up2

∞ . This is clear since

Rp2|Up2
∞ is ergodic by clusters indistinguishability.

4. THE NON-UNIQUENESS PHASE IN BERNOULLI PERCOLATION

A famous conjecture by Benjamini and Schramm [4, Conjecture 6] is that if a tran-

sitive graph G with finite degree is nonamenable, then pc(G) < pu(G). This section

is devoted to presenting a partial answer to this question, due to Pak and Smirnova-

Nagnibeda [54]: for any nonamenable finitely-generated group Γ, there exists a finite

generating family S such that the Cayley graph G := Cay(Γ, S) has a non-uniqueness

phase, that is, for which pc(G) < pu(G).

Let G = Cay(Γ, S) be a Cayley graph of an infinite finitely generated group Γ with

respect to a finite generating family S = (s1, . . . , sd). Recall that the vertex set V is

Γ and the edge set E is {[g, gsi] : g ∈ Γ, 1 ≤ i ≤ d}. For a non-empty finite subset
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F ⊂ V, let ∂EF be the set of edges which have exactly one endpoint in F . Define the

edge-isoperimetric constant of G by

ιE(G) := inf

{
|∂EF |
|F |

: ∅ 6= F ⊂ V finite subset

}
.

A graph G is edge-amenable if ιE(G) = 0. A finitely generated group Γ is amenable if for

some (or equivalently for every) finite generating family S, the Cayley graph Cay(Γ, S)

is edge-amenable. The first result of this section is due to Benjamini and Schramm

[4, Theorem 2].

Theorem 4.1 (Upper bound for pc). — Let G = Cay(Γ, S). Then

pc(G) ≤ 1

ιE(G) + 1
.

Proof. — Fix p > 1
ιE(G)+1

and let Pp be the corresponding Bernoulli(p) percolation

on G. Fix v ∈ V. Let (ei)i≥1 be an ordering of E so that e1 is incident with v. Let

ω ∈ {0, 1}E be a configuration. We explore the open cluster C(ω; v) by looking at the

following inductive procedure.

Let E1 = {e1}, V1 = {v} and X1(ω) = ω(e1). Assume Ek and Vk have been defined.

Denote by Vk+1 the set {v} ∪ {endpoints of open edges in Ek}. Let nk+1 be the least

integer n such that the edge en ∈ E \ Ek has exactly one endpoint in Vk+1, if any.

(a) If there are none, then stop. Denote by k := n(ω) the stopping time. In that case,

the open cluster C(ω; v) containing v is finite. Then set `k = sup{nj : 1 ≤ j ≤ k}
and Xk+i(ω) = ω(e`k+i), for all i ≥ 1.

(b) Otherwise, let Ek+1 = Ek ∪ {enk+1
} and Xk+1(ω) = ω(enk+1

).

If the procedure never ends, then the open cluster C(ω; v) is infinite.

Claim. — (Xn)n≥1 is an infinite sequence of i.i.d. {0, 1}-valued Bernoulli(p) random

variables.

It suffices to show that for all k ≥ 1 and all ε1, . . . , εk ∈ {0, 1}, we have

(1) Pp[Xk+1 = 1|X1 = ε1, . . . , Xk = εk] = p.

Denote by A = {ω : X1(ω) = ε1, . . . , Xk(ω) = εk}, Ai = A ∩ {ω : n(ω) = i},
for 1 ≤ i ≤ k, and Ak+1 = A ∩ {ω : n(ω) ≥ k + 1}. For i ≤ k, there are k + 1

fixed distinct edges f1 = en1 , . . . , fi = eni , fi+1 = e`i+1, . . . , fk+1 = e`i+k+1−i, with

`i = sup{nj : 1 ≤ j ≤ i}, such that Ai = {ω : ω(f1) = ε1, . . . , ω(fk) = εk}. We

moreover have Pp[Xk+1 = 1|Ai] = Pp[ω(fk+1) = 1|Ai]. Since the edges f1, . . . , fk+1

are distinct, the random variables ω(f1), . . . , ω(fk+1) are independent. It follows that

Pp[ω(fk+1) = 1|Ai] = p. Likewise, for i = k + 1, there are k + 1 fixed distinct edges

en1 , . . . , enk+1
such that Ak+1 = {ω : ω(en1) = ε1, . . . , ω(enk) = εk}. We moreover

have Pp[Xk+1 = 1|Ak+1] = Pp[ω(enk+1
) = 1|Ak+1]. Since the edges en1 , . . . , enk+1

are

distinct, the random variables ω(en1), . . . , ω(enk+1
) are independent. It follows that
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Pp[ω(enk+1
) = 1|Ak+1] = p. Since the event A is equal to the disjoint union of the

events A1, . . . ,Ak+1, we get Equation (1), which finishes the proof of the claim.

By the strong law of large numbers, we get

Pp

[
1

n

n∑
k=1

Xk(ω) >
1

ιE(G) + 1
,∀n ≥ 1

]
> 0.

We denote by A this last event. We show that C(ω; v) must be infinite on the event A.

Assume that C(ω; v) is finite. Simply denote n = n(ω) and let En be the last set of

selected edges according to (a). Let m = |C(ω; v)|. We have that En contains ∂EC(ω; v)

(for which all edges are closed) and a spanning tree of C(ω; v) with m− 1 open edges.

Thus we have n ≥ |∂EC(ω; v)|+m− 1 and
∑n

k=1Xk(ω) = m− 1, so that

1

n

n∑
k=1

Xk(ω) =
m− 1

n
≤ m− 1

|∂EC(ω; v)|+m− 1
≤ 1
|∂EC(ω;v)|
|C(ω;v)| + 1

≤ 1

ιE(G) + 1
.

It follows that C(ω; v) is infinite on the event A and thus

Pp[C(ω; v) is infinite] > 0.

Therefore p > pc(G), which finishes the proof.

Let G = Cay(Γ, S), where S = (s1, . . . , sd). Let P : `2(Γ)→ `2(Γ) be the correspond-

ing simple random walk operator: for all f ∈ `2(Γ),

(Pf)(g) =
1

d

d∑
i=1

f(gsi).

It is easy to see that as a bounded operator on `2(Γ), we have P = P ∗ and ‖P‖∞ ≤ 1

(where ‖ · ‖∞ is the operator norm). Fix an orientation of the edges. Define the dif-

ferential operator ∂ : `2(Γ) → `2(E) by (∂f)(e) = f(e+) − f(e−). The combinatorial

Laplacian is then defined as the positive self-adjoint operator ∆ = ∂∗∂. A straightfor-

ward computation gives ∆ = d(1−P ). The spectral radius of the graph G is defined as

ρ(G) := ‖P‖∞.

Proposition 4.2 ([45]). — Let G = Cay(Γ, S), where S = (s1, . . . , sd). Then

ιE(G) ≥ d(1− ρ(G)).

Proof. — Let F ⊂ V be a nonempty finite subset. Let f = 1F . We have

|∂EF | = 〈∆f, f〉 = d〈(1− P )f, f〉 ≥ d(1− ρ(G))‖f‖2 = d(1− ρ(G))|F |,

and the proposition follows.

Choose a vertex v ∈ V (e.g. v = 1Γ) and denote by an(G) the number of simple cycles

of length n in G that contain v. Let

γ(G) := lim sup
n

an(G)1/n.
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Denote by (〈Xn〉,Pv) the simple random walk on G starting at v. Recall that ρ(G) =

lim supn(Pv[Xn = v])1/n. Any simple cycle of length n that contains v defines a way for

the simple random walk starting at v to return to v at time n. That event has probability

1/dn. Therefore Pv[Xn = v] ≥ an(G)/dn, which shows that γ(G) ≤ dρ(G). The next

theorem, due to Schramm, is an improvement of an earlier result of Benjamini and

Schramm [4, Theorem 4]. The proof we give here is borrowed from Lyons [40, Theorem

3.9].

Theorem 4.3 (Lower bound for pu). — Let G = Cay(Γ, S). Then

1

γ(G)
≤ pu(G).

Proof. — Let 1 > p > pu(G) ≥ pc(G). Since p > pu(G), we know that Pp-a.s. the open

subgraph ω contains a unique infinite cluster C(ω) which has only one end. We start

by proving the following.

Claim ([42]). — Let G be a graph of bounded degree that does not contain an infinite

simple cycle. Then pc(G) = 1.

By repeated applications of Menger’s Theorem(4) we see that if v is a vertex in G,

then there are infinitely many vertices vn such that v is in a finite cluster of G \ {vn}.
Since G has bounded degree, it follows that pc(G) = 1, which finishes the proof of the

claim.

We get that Pp-a.s. ω contains an infinite simple cycle. Otherwise, the claim would

imply that with Pp-positive probability, pc(ω) = 1. This contradicts the fact that

Pp-a.s. pc(ω) = pc(G)/p < 1.

Denote by A ⊂ {0, 1}E the event that there is an infinite simple cycle in the p-open

cluster C(ω) containing v. We may regard such an infinite simple cycle as the union

of two disjoint infinite simple rays starting at v. We have proven that Pp[A] > 0.

Since C(ω) has only one end, these two paths may be connected by paths in ω that

stay outside arbitrarily large balls. In particular, there are an infinite number of simple

cycles in ω ∈ A through the vertex v. The expected number of such simple cycles must

be infinite, whence we obtain in particular
∑

n an(G)pn =∞. Thus p > γ(G)−1, which

finishes the proof.

Corollary 4.4. — Let G = Cay(Γ, S). Assume that ρ(G) ≤ 1/2. Then pc(G) < pu(G).

Proof. — Using Proposition 4.2, Theorems 4.1 and 4.3, we have

pc(G) ≤ 1

ιE(G) + 1
<

1

ιE(G)
≤ 1

d(1− ρ(G))
≤ 1

dρ(G)
≤ 1

γ(G)
≤ pu(G).

(4)For any vertex v in an infinite graph G, the maximum number of paths from v to∞ that are pairwise

disjoint (except at v) is equal to the minimum cardinality of a set W of vertices such that W is disjoint

from v, but every path from v to ∞ passes through W .
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We finally state and prove the result of Pak and Smirnova-Nagnibeda [54].

Corollary 4.5. — Let Γ be a finitely generated nonamenable group. Then there exists

a generating family S of Γ such that pc(Cay(Γ, S)) < pu(Cay(Γ, S)).

Proof. — Let S be a finite generating family for Γ such that 1Γ ∈ S and let

G = Cay(Γ, S). For k ≥ 1, define the k-fold family S[k]. The group Γ may be regarded

as generated by S[k]. Let G [k] = Cay(Γ, S[k]). If P denotes the random walk operator

on the graph G, then P k is the random walk operator of G [k]. Thus

ρ(G [k]) = ‖P k‖∞ ≤ ‖P‖k∞ = ρ(G)k.

Since Γ is nonamenable, ρ(G) < 1 by Kesten’s result [37]. Let k be a large enough

integer so that ρ(G)k ≤ 1/2. We finally get ρ(G [k]) ≤ 1/2. By Corollary 4.4, the finite

generating family S[k] does the job.

5. MINIMAL SPANNING FORESTS AND APPLICATIONS

5.1. Minimal spanning forests

We first review results due to Lyons, Peres and Schramm [42] regarding minimal

spanning forests on infinite connected graphs and their relation to Bernoulli percolation.

Let G = Cay(Γ, S) be a Cayley graph of an infinite finitely generated group Γ with

respect to a finite generating family S. As usual, denote by V the vertex set and by

E the edge set. Denote by Forest(G) ⊂ {0, 1}E the Borel subset of all forests of G. A

random forest is an invariant bond percolation supported on Forest(G). We endow the

Borel space [0, 1]E with the product probability measure P = LebE. Given x ∈ [0, 1]E an

injective labeling of the edges, let FMSF(x) be the set of edges e ∈ E such that in every

simple cycle in G containing e, there exists at least one edge e′ 6= e with x(e′) > x(e).

The Aut(G)-equivariant map FMSF : [0, 1]E → {0, 1}E (or simply its law) is called the

free minimal spanning forest on G. Observe that if G is a tree, then P-a.s. FMSF(x) = G.

An extended simple cycle in G is either a simple cycle in G or an infinite simple cycle

in G. Given x ∈ [0, 1]E an injective labeling of the edges, let WMSF(x) be the set of

edges e ∈ E such that in every extended simple cycle in G containing e, there exists

at least one edge e′ 6= e with x(e′) > x(e). Equivalently, WMSF(x) consists of those

edges e such that there is a finite set W ⊂ V where e is the least edge joining W to

V \W . The Aut(G)-equivariant map WMSF : [0, 1]E → {0, 1}E (or simply its law) is

called the wired minimal spanning forest on G. Observe that if G is a tree with one end,

then P-a.s. WMSF(x) = G.

It is clear that WMSF(x) ⊂ FMSF(x). Moreover, WMSF(x) and FMSF(x) are indeed

forests since in every simple cycle in G, the edge e with maximum label x(e) is contained

neither in WMSF(x) nor in FMSF(x). Moreover, all the clusters of WMSF(x) and

FMSF(x) are infinite since the least edge joining every finite vertex set to its complement

belongs to both forests.
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Define

f(x, e) := inf
P

max{x(e′) : e′ ∈ P , e′ 6= e},

where the infimum is over simple cycles P that contain the edge e. If there are none,

the infimum is defined to be ∞. It follows that FMSF(x) = {e ∈ E : x(e) ≤ f(x, e)}.
Likewise, define

w(x, e) := inf
P

sup{x(e′) : e′ ∈ P , e′ 6= e},

where the infimum is over extended simple cycles P in G that contain the edge e. If there

are none, the infimum is defined to be ∞. It follows that {e ∈ E : x(e) < w(x, e)} ⊂
WMSF(x) ⊂ {e ∈ E : x(e) ≤ w(x, e)}. Since x(e) and w(x, e) are independent random

variables and x(e) is uniformly distributed, we get P-a.s.

WMSF(x) = {e ∈ E : x(e) < w(x, e)} = {e ∈ E : x(e) ≤ w(x, e)}.

It is clear that w(x, e) ≤ f(x, e), for all e ∈ E. The following is [42, Proposition 6].

Proposition 5.1. — Let G = Cay(Γ, S). Then WMSF 6= FMSF if and only if

pc(G) < pu(G).

Proof. — We will use the standard coupling πp : ([0, 1]E,P)→ ({0, 1}E,Pp) as defined

previously. Since WMSF(x) ⊂ FMSF(x) and E is countable, it follows that WMSF 6=
FMSF if and only if there exists e ∈ E such that P[w(x, e) < x(e) ≤ f(x, e)] > 0.

Recall that x(e) is independent from the random variables w(x, e) and f(x, e), and

x(e) is uniformly distributed. Therefore WMSF 6= FMSF if and only if there exist e ∈ E

and p1 < p2 such that P[w(x, e) ≤ p1 < p2 ≤ f(x, e)] > 0.

Assume that pc(G) < pu(G). Let pc(G) < p1 < p2 < pu(G). Using Theorem 3.1,

we know that P-a.s. πp2(x) has at least two distinct infinite clusters and each of

these clusters contains an infinite cluster of πp1(x). Therefore there exists a simple

path P = (e1, . . . , en) of minimal length n in G, where ei = [vi, vi+1], such that with

P-positive probability the following hold:

1. P connects two distinct infinite clusters of πp1(x).

2. The clusters C(πp2(x); v1) and C(πp2(x); vn+1) are infinite and distinct.

Using the standard coupling and since Pp1 and Pp2 are both insertion and deletion

tolerant, the minimal length of P has to be 1. In other words, there exists an edge

e ∈ E such that with P-positive probability, the two endpoints of e are in distinct

infinite clusters of πpi(x), for i = 1, 2. We get P[w(x, e) ≤ p1 < p2 ≤ f(x, e)] > 0,

whence WMSF 6= FMSF.

Conversely, assume that WMSF 6= FMSF. In particular, there exist e ∈ E and p such

that P[w(x, e) < p ≤ f(x, e)] > 0. Then P[w(x, e) < p ≤ f(x, e) and p ≤ x(e)] > 0. It

follows that with P-positive probability, πp(x) has at least two distinct infinite clusters,

whence pc(G) < pu(G).
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5.2. Cluster equivalence relations of MSF

We denote by RWMSF and RFMSF the cluster equivalence relations associated to both

minimal spanning forests on G = Cay(Γ, S). Both of them are of type II1 and the

treeing of RWMSF is a subtreeing of RFMSF, that is, RWMSF ⊂ RFMSF. Lyons, Peres

and Schramm proved that P-a.s. every tree of WMSF(x) has exactly one end (see [42,

Theorem 3.12]). In other words, RWMSF is treeable and P-almost every orbit is a tree

with one end. It follows that RWMSF is hyperfinite. We prove the following elementary

fact (see [42, Proposition 3.5]).

Proposition 5.2. — Let G = Cay(Γ, S). Assume that WMSF 6= FMSF. Then RFMSF

is not hyperfinite.

Proof. — Assume that RFMSF is hyperfinite. Using [21, Proposition III.3], we get

1 ≤ cost(RWMSF) ≤ cost(RFMSF) = 1 so that RWMSF = RFMSF. For ω = WMSF(x) or

FMSF(x), denote by T(ω; g) the tree (cluster) containing the vertex g ∈ Γ. Therefore,

P-a.s. T(WMSF(x); 1Γ) = T(FMSF(x); 1Γ). By Γ-invariance, we get that P-a.s. for all

g ∈ Γ, T(WMSF(x); g) = T(FMSF(x); g) and thus WMSF = FMSF.

Timár [65] proved that if WMSF 6= FMSF, then RFMSF is in fact nowhere hyperfinite,

that is, the restriction of RFMSF to any non-null measurable subset is not hyperfinite.

We now present the proof of the result of Gaboriau and Lyons [22]. We will use a result

of Chifan and Ioana [8, Theorem 1], the proof of which is postponed until Section 7.

Theorem 5.3 (Measurable subgroup). — For any nonamenable group Γ there exists

a free ergodic pmp action F2 y ([0, 1]Γ,LebΓ) such that

R(F2 y [0, 1]Γ) ⊂ R(Γ y [0, 1]Γ).

Proof. — Let Γ be a nonamenable group. Since the union of an increasing sequence

of amenable groups is still amenable, Γ contains a nonamenable finitely generated sub-

group. Thus, up to taking such a subgroup, we may assume that Γ is finitely generated.

The proof is in two steps.

Step 1. There exists a subequivalence relation R ⊂ R(Γ y [0, 1]Γ) which is ergodic

treeable and non-hyperfinite.

Let S be a finite generating family such that the Cayley graph G = Cay(Γ, S) satisfies

pc(G) < pu(G) (see Corollary 4.5). As usual, denote the graph G = (V,E). Recall that

the pmp actions Γ y [0, 1]Γ and Γ y [0, 1]E are conjugate. By Propositions 5.1 and 5.2,

we know thatRFMSF is not hyperfinite. Apply now Theorem 7.1 toRFMSF that we regard

as a subequivalence relation of R(Γ y [0, 1]Γ). Then there exists a non-null measurable

subset X ⊂ [0, 1]Γ such that RFMSF|X is ergodic treeable and non-hyperfinite. In order

to extend RFMSF|X to [0, 1]Γ, choose an enumeration {gi : i ∈ N} of Γ. For every

x ∈ [0, 1]Γ \ X, let nx be the least integer j ∈ N such that gjx ∈ X. Let R be the

smallest equivalence relation containing RFMSF|X and (x, gnxx), for x ∈ [0, 1]Γ \X. We

get that R is ergodic treeable and non-hyperfinite.
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Step 2. There exists a subequivalence relation S ⊂ R(Γ y [0, 1]Γ) which is induced

by a free ergodic pmp action F2 y [0, 1]Γ.

By [21, Théorème IV.1], we have that R has cost greater than 1. Next, we need the

following result due to Hjorth [26] (see also the proof of [36, Theorem 28.3]).

Lemma 5.4. — Any ergodic treeable pmp equivalence relation R such that cost(R) ≥ 2

contains a subequivalence relation induced by a free pmp action of F2 = 〈a, b〉 such that

the generator a acts ergodically.

Using the induction formula [21, Proposition II.6], let U ⊂ [0, 1]Γ be a Borel mea-

surable subset such that cost(R|U) ≥ 2. By Lemma 5.4, R|U contains a subequiv-

alence relation T = R(F2 y U) induced by a free pmp action of F2 = 〈a, b〉 such

that the generator a acts ergodically. By considering a subgroup of F2 of the form

〈bkabk : 1 ≤ k ≤ n〉, for some large n ∈ N, one gets an ergodic treeable subequivalence

relation of R|U with large cost so that when extended to the whole space (by using

partial Borel isomorphisms of R), it gets cost ≥ 2 by [21, Proposition II.6]. Another

application of Lemma 5.4 finishes the proof of Step 2.

6. FINITE VON NEUMANN ALGEBRAS

We review a few concepts involving finite von Neumann algebras. Further information

on this topic may be found in the book [6] by Brown and Ozawa.

A von Neumann algebra M is a unital ∗-subalgebra of B(`2) which is closed for the

strong operator topology. We only deal with tracial or finite von Neumann algebras,

that is, M is always assumed to carry a faithful normal state τ : M → C which

moreover satisfies the trace identity: τ(xy) = τ(yx), for all x, y ∈ M . We denote by

‖x‖2 = τ(x∗x)1/2 the corresponding Hilbert norm and L2(M) the L2-completion of M

with respect to ‖ · ‖2. The uniform norm is denoted by ‖ · ‖∞. We regard x ∈M both

as an element of L2(M) and as a bounded (left multiplication) operator on L2(M). We

will often use the following inequality:

‖xξy‖2 ≤ ‖x‖∞‖y‖∞‖ξ‖2,∀x, y ∈M, ∀ξ ∈ L2(M).

The group of unitaries of M is denoted by U(M), the center M ′ ∩M is Z(M) and the

unit ball with respect to the uniform norm is (M)1. An infinite dimensional finite von

Neumann algebra with trivial center is called a II1 factor.

The main class of examples of finite von Neumann algebras arises from the group

measure space construction of Murray and von Neumann [48]. Let Γ y (X,µ) be a

free pmp action of a countable infinite group Γ on a nonatomic standard probability

space. We regard F ∈ L∞(X) as a bounded operator on `2(Γ) ⊗ L2(X) by iden-

tifying F with 1 ⊗ F ∈ B(`2(Γ) ⊗ L2(X)). The action Γ y X induces a unitary

representation σ : Γ→ U(L2(X)) defined by σg(ξ)(x) = ξ(g−1x), for all ξ ∈ L2(X).

Let λ : Γ→ U(`2(Γ)) be the left regular representation. The unitaries ug = λg ⊗ σg
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satisfy the following covariance relation: ugξu
∗
g = σg(ξ), for all ξ ∈ L2(X), g ∈ Γ. By

Fell’s absorption principle, the unitary representation (ug)g∈Γ is unitarily equivalent to

a multiple of (λg)g∈Γ. The crossed product von Neumann algebra L∞(X)oΓ is defined

by

L∞(X)o Γ :=

{∑
finite

ξgug : ξg ∈ L∞(X)

}′′
⊂ B(`2(Γ)⊗ L2(X)).

The von Neumann algebra M := L∞(X) o Γ contains a copy of L∞(X) as well as a

copy of the group von Neumann algebra L(Γ). Moreover M is endowed with a trace τ

given by τ(a) = 〈a(δe ⊗ 1X), δe ⊗ 1X〉. The subalgebra A := L∞(X) ⊂ M is called a

Cartan subalgebra.(5) The von Neumann algebra M is a II1 factor if and only if the

action Γ y X is ergodic. More generally, one can define the von Neumann algebra

L(R) of a pmp equivalence relation R on (X,µ) (see [17]). Note that L∞(X) ⊂ L(R)

is still a Cartan subalgebra. When R is a type II1 equivalence relation, R is ergodic if

and only if L(R) is a II1 factor. For a free pmp action Γ y (X,µ), the von Neumann

algebras L∞(X)o Γ and L(R(Γ y X)) are ∗-isomorphic.

Given finite von Neumann algebras M and N , an M -N -bimodule MHN is a Hilbert

space endowed with two commuting normal ∗-representations πM : M → B(H) and

πNop : Nop → B(H). We simply denote xξy = πM(x)πNop(y)ξ, for all x ∈ M , y ∈ N ,

ξ ∈ H. The bimodule ML
2(M)M is the trivial bimodule and M⊗1L

2(M⊗M)1⊗M is

the coarse bimodule. Given two M -N -bimodules H and K, we say that H is weakly

contained in K and write H ⊂weak K, if for all ξ, η ∈ H and all finite subsets F ⊂ M ,

G ⊂ N , there exist two sequences ξn, ηn in finite direct sums of K such that

〈xξy, η〉 = lim
n
〈xξny, ηn〉,∀x ∈ F, ∀y ∈ G.

Given an inclusion B ⊂ M of finite von Neumann algebras, denote by EB : M → B

the unique trace-preserving normal conditional expectation. If we moreover denote by

eB : L2(M) → L2(B) the orthogonal projection, we have eBxeB = EB(x)eB, for all

x ∈ M . The basic construction 〈M, eB〉 is the von Neumann subalgebra of B(L2(M))

generated by M and eB. It is endowed with a faithful normal semifinite trace Tr given

by Tr(xeBy) = τ(xy), for all x, y ∈ M . The M -M -bimodule L2(〈M, eB〉) is mixing

relative to B in the following sense: whenever un ∈ U(M) is a sequence of unitaries

such that limn ‖EB(x∗uny)‖2 = 0, for all x, y ∈ M , then for every ξ, η ∈ L2(〈M, eB〉),
we have

lim
n

sup
y∈(M)1

|〈unξy, η〉| = lim
n

sup
x∈(M)1

|〈xξun, η〉| = 0.

Recall that M is hyperfinite if there exists an increasing sequence of unital finite

dimensional ∗-subalgebras Qn ⊂ M such that M is the weak closure of
⋃
nQn. When

R is a pmp equivalence relation, R is hyperfinite if and only if L(R) is hyperfinite [11].

(5)A Cartan subalgebra A ⊂ M is a maximal abelian ∗-subalgebra whose normalizer NM (A) =

{u ∈ U(M) : uAu∗ = A} generates M as a von Neumann algebra.
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In their seminal work [47], Murray and von Neumann showed the uniqueness of the

hyperfinite II1 factor. We say that M is amenable if

ML
2(M)M ⊂weak M⊗1L

2(M⊗M)1⊗M .

Any hyperfinite von Neumann algebra is amenable. By Connes’ groundbreaking work

[10], any amenable von Neumann algebra is hyperfinite. Therefore, there is a unique

amenable II1 factor.

Recall at last Popa’s intertwining-by-bimodules technique. Popa discovered [58, 60] a

very powerful technique to unitarily conjugate subalgebras in an ambient von Neumann

algebra. Let A,B ⊂M be subalgebras of a finite von Neumann algebra. The following

are equivalent (see [58, Theorem 2.1], [60, Theorem A.1] and also [67, Theorem C.3]).

– There exist projections p ∈ A, q ∈ B, a nonzero partial isometry v ∈ pMq and a

∗-homomorphism ϕ : pAp→ qBq such that xv = vϕ(x), for all x ∈ pAp.
– There is no sequence of unitaries un ∈ U(A) such that

lim
n
‖EB(xuny)‖2 = 0,∀x, y ∈M.

If one of the two conditions holds, we say that A embeds into B inside M and write

A �M B. By definition, A is diffuse if A �A C, that is, if A has no nonzero minimal

projection.

7. SUBEQUIVALENCE RELATIONS OF BERNOULLI ACTIONS

As we have seen before, given a Cayley graph G = Cay(Γ, S), a Γ-equivariant map

π : [0, 1]E → {0, 1}E gives rise to a percolation π∗P on G and hence to a subequivalence

relation Rcl
π of the equivalence relation R(Γ y [0, 1]E) induced by the Bernoulli ac-

tion. The aim of this section is to present a global dichotomy result for subequivalence

relations of R(Γ y [0, 1]E), obtained by Chifan and Ioana [8, Theorem 1].

Theorem 7.1 (Dichotomy for subequivalence relations). — Let Γ be any infinite

countable discrete group. Let R ⊂ R(Γ y [0, 1]Γ) be any subequivalence relation of

the pmp equivalence relation induced by the Bernoulli action. Then there exists a

measurable partition {Xn : n ∈ N} of [0, 1]Γ into R-invariant subsets such that

– R|X0 is hyperfinite.

– R|Xn is strongly ergodic, for all n ≥ 1.

We give a self-contained proof of this result. We first start by recalling the construc-

tion of the support length deformation for Bernoulli actions due to Ioana [29]. We will

be using the following notation throughout this section.

– Let (A0, τ) be an abelian von Neumann algebra, A = AΓ
0 the infinite tensor product

indexed by Γ and Γ y A the corresponding Bernoulli shift. Set M = Ao Γ.

– Likewise, let B0 = A0∗L(Z) be the free product with respect to the natural traces,

B = BΓ
0 and σ : Γ y B the corresponding Bernoulli shift. Set M̃ = B o Γ.
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Observe that M ⊂ M̃ and denote by EM : M̃ → M the unique trace-preserving

normal conditional expectation. Following [29], denote by v ∈ L(Z) the canonical

generating Haar unitary and take the selfadjoint element h ∈ L(Z) with spectrum

[−π, π] such that v = exp(ih). Denote by θ0
t ∈ Aut(B0) the inner automorphism given

by θ0
t = Ad(exp(ith)) and let θt = ⊗g∈Γθ

0
t ∈ Aut(B). Since (θt) commutes with the

Bernoulli action, we can extend (θt) to M̃ by letting θt(ug) = ug. We get that (θt)t∈R
is a one-parameter group of automorphisms of M̃ such that limt→0 ‖x − θt(x)‖2 = 0,

for all x ∈ M . Denote by β0 ∈ Aut(B0) the automorphism given by β0(a) = a, for all

a ∈ A0 and β0(v) = v∗. Define β = ⊗g∈Γβ0 and extend β to M̃ by acting trivially on

L(Γ). By construction, β|M = IdM , β2 = IdM̃ and β ◦ θt = θ−t ◦ β, for all t ∈ R.

For 0 < ρ < 1, define the support length deformation mρ : M →M by

mρ(aug) = ρnaug, ∀g ∈ Γ,∀a ∈ (A0 	C1)J , J ⊂ Γ, |J | = n.

Let ρt = | sin(πt)|2/|πt|2. One checks that (EM ◦ θt)(x) = mρt(x), for all x ∈ M . In

particular, (mρ) is a family of trace-preserving unital completely positive maps for which

θt : M → M̃ is a dilation. In this respect, the support length deformation (mρ) is a

variant of the malleable deformation discovered by Popa in [58]. Popa used his malleable

deformation together with his intertwining techniques to prove various striking rigidity

results for Bernoulli actions (see for instance [55, 58] and Vaes’ Bourbaki seminar [67]

on this topic.)

Spectral gap rigidity was discovered by Popa [55, 56]. It was a completely new type

of rigidity where the usual (relative) property (T) assumption in many (orbit and W∗)-

rigidity results could be dropped. Using this technique, Popa [55] proved, among other

results, that for any nonamenable product of infinite groups Γ = Γ1 × Γ2, the plain

Bernoulli action Γ y [0, 1]Γ is Ufin-cocycle superrigid.(6)

The following variant of spectral gap property is due to Chifan and Ioana (see [8,

Lemma 5]).

Proposition 7.2 (Spectral gap). — As M-M-bimodules, we have

(2) M(L2(M̃)	 L2(M))M ⊂weak M⊗1L
2(M⊗M)1⊗M .

Proof. — We start by proving the following.

Claim. — There is a countable set {(Γi,∆i) : i ∈ I}, where Γi < Γ is a finite subgroup

and ∆i ⊂ Γ is a non-empty set which is invariant under left multiplication by Γi such

that with Ai = A
Γ\∆i

0 o Γi, we have an isomorphism of M-M-bimodules

(3) L2(M̃)	 L2(M) ∼=
⊕
i∈I

L2 (〈M, eAi〉) .

(6)Ufin is the class of groups which embed into the unitary group of a ‖ · ‖2-separable II1 factor.
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To prove the claim, let A0 ⊂ A0 	 C be an orthonormal basis of L2(A0) 	 C and

denote by v the Haar unitary generating L(Z). Recall that B0 = A0 ∗ L(Z). Define

the subset B0 := {vn1a1 · · · vnkakvnk+1 : k ≥ 0, n1, . . . , nk+1 ∈ Z − {0}, ai ∈ A0}. By

construction, we have a decomposition

L2(B0)	 L2(A0) =
⊕
b∈B0

A0bA0

into pairwise orthogonal A0-A0-subbimodules. Define the countable set

I =

{
bF =

⊗
g∈F

bg : ∅ 6= F ⊂ Γ finite subset, bg ∈ B0 for all g ∈ F

}
.

We have a decomposition

(4) L2(M̃)	 L2(M) =
⊕
b∈I

MbM

into pairwise orthogonal M -M -subbimodules. For b ∈ I, define the finite subgroup

Γb = {g ∈ Γ : gF = F and σg(b) = b}. Let Ab = A
Γ\F
0 o Γb. One checks that the map

xeAby 7→ xby defines an M -M -bimodule isomorphism

(5) L2(〈M, eAb〉)→MbM.

The claim follows now from (4) and (5). Finally, since Ai is amenable, the isomorphism

(3) together with [2, Lemma 1.7] yield (3)

If P ⊂ M has no amenable direct summand, then for every ε > 0, there exist δ > 0

and V ⊂ U(P ) finite subset such that for every x ∈ (M̃)1,

(6) (‖ux− xu‖2 ≤ δ, ∀u ∈ V) =⇒ ‖x− EM(x)‖2 ≤ ε.

Indeed, assume that (6) does not hold. Then one can find a sequence xn ∈ (M)1,

such that xn ∈ L2(M̃) 	 L2(M), ‖xn‖2 = 1 and limn ‖yxn − xny‖2 = 0, for all y ∈ P .

Up to passing to a subsequence we may assume that bn = xnx
∗
n converges weakly to

b ∈ (P ′ ∩M)1. Observe that τ(b) = 1. Let c ∈ Z(P )+ so that p = EP (b)1/2c ∈ Z(P ) is

a nonzero projection. From (2), we get that, as Pp-Pp-bimodules,

(7) Pp(L
2(M̃)	 L2(M))Pp ⊂weak Pp⊗1L

2(Pp⊗Pp)1⊗Pp.

Define ξn := cxn. For all y ∈ P , we have limn ‖yξn − ξny‖2 = 0 and

lim
n
〈yξn, ξn〉 = lim

n
τ(ycxnx

∗
nc) = lim

n
τ(ycbc) = τ(yp),

whence

(8) PpL
2(Pp)Pp ⊂weak Pp(L

2(M̃)	 L2(M))Pp.

Together with (7) and (8), we finally obtain that Pp is amenable.

The next result due to Chifan and Ioana (see [8, Theorem 2]) is the key to proving

the global dichotomy result for subequivalence relations.
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Theorem 7.3. — Let Q ⊂ A be a diffuse von Neumann subalgebra. Then Q′ ∩M is

amenable.

We point out that this result was earlier obtained by Ozawa [53, Theorem 4.7] for

all exact groups Γ using C∗-algebraic techniques. Chifan and Ioana’s proof that we

present here relies on a theory developed by Popa over the last decade known today as

deformation vs. rigidity. We refer to [57, 66] for further information on this topic.

Proof of Theorem 7.3. — The proof is reminiscent of the one of [58, Theorem 4.1] (see

also [67, Lemma 6.1]). We prove the result by contradiction following the lines of

the proof of [33, Theorem 4.2]. We may assume that Q ⊂ A is diffuse and Q′ ∩M
has no amenable direct summand. We will be using the following terminology. Given

subalgebras Q1, Q2 ⊂ M̃ , an element x ∈ M̃ is said to be Q1-Q2-finite inside M̃ if there

exist elements x1, . . . , xm, y1, . . . , yn ∈ M̃ such that

(9) xQ2 ⊂
m∑
i=1

Q1xi and Q1x ⊂
n∑
j=1

yjQ2.

Step 1. — There exist t = 1/2n and a nonzero element v ∈ M̃ which is Q-θt(Q)-finite.

Let ε = 1/2. Proposition 7.2 yields δ > 0 and a finite subset V ⊂ U(Q′ ∩M) for

which (6) holds. Let s small enough so that ‖b − θs(b)‖2 ≤ δ/2, for all b ∈ V . For all

u ∈ U(Q),

‖bθs(u)− θs(u)b‖2 = ‖(b− θs(b))θs(u)− θs(u)(b− θs(b))‖2

≤ 2‖θs(u)‖∞‖b− θs(b)‖2 ≤ δ.

Using Proposition 7.2, we get ‖θs(u)−EM(θs(u))‖2 ≤ 1/2, for all u ∈ U(Q). Let ρ = ρ2
s,

so that mρ = m2
ρs . For all u ∈ U(Q), we have

1− τ(u∗mρ(u)) = 1− ‖mρs(u)‖2
2 = ‖θs(u)− EM(θs(u))‖2

2 ≤ 1/4.

Then τ(u∗θs(u)) = τ(u∗mρ(u)) ≥ 3/4, for all u ∈ U(Q). Since t 7→ τ(u∗θt(u)) is

decreasing, we can take t = 1/2n such that τ(u∗θt(u)) ≥ 3/4, for all u ∈ U(Q). Let

v be the unique element of minimal ‖ · ‖2-norm in the weak closure of the convex hull

of {u∗θt(u) : u ∈ U(Q)}. We get τ(v) ≥ 3/4 and uv = vθt(u), for all u ∈ U(Q) (by

uniqueness). In particular, v ∈ M̃ is a nonzero Q-θt(Q)-finite element.

Step 2. — There exists a nonzero element a ∈ M̃ which is Q-θ1(Q)-finite.

To prove Step 2, it suffices to show the following statement: if there exists a nonzero

element v which is Q-θt(Q)-finite, then there exists a nonzero element w which is

Q-θ2t(Q)-finite. Indeed, since t = 1/2n, we can then go until t = 1. Denote by QNM(Q)

the set of all Q-Q-finite elements inside M (QNM(Q) is also called the quasi-normalizer

of Q inside M [60]). Let P := QNM(Q)′′ ⊂ M . Observe that for all d ∈ QNM(Q), the
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element θt(β(v∗)dv) is Q-θ2t(Q)-finite. Indeed, let d ∈ QNM(Q) which satisfies (9) for

Q1 = Q2 = Q. Then we get

θt(β(v∗)dv)θ2t(Q) = θt(β(v∗)dQv) ⊂
∑
i

θt(β(v∗)Qxiv) =
∑
i

Qθt(β(v∗)xiv)

Qθt(β(v∗)dv) = θt(β(v∗)Qdv) ⊂
∑
j

θt(β(v∗)yjQv) =
∑
j

θt(β(v∗)yjv)θ2t(Q).

Hence we have to prove that there exists d ∈ QNM(Q) such that β(v∗)dv 6= 0. By

contradiction, assume that this is not the case. Denote by q ∈ M̃ the projection

onto the closed linear span of {range(dv) : d ∈ QNM(Q)}. We have β(v∗)q = 0 and

q ∈ P ′ ∩ M̃ .

We use now again the M -M -bimodule isomorphism (3). Since Q′∩M ⊂ P , it follows

that P has no amenable direct summand and thus P �M Ai, for all i ∈ I. Therefore

there exists a sequence of unitaries un ∈ U(P ) such that limn ‖EAi(x∗uny)‖2 = 0, for

all x, y ∈ M , i ∈ I. Let x ∈ P ′ ∩ M̃ . Set η := x − EM(x). Observe that η ∈ P ′ ∩ M̃
and η ⊥ L2(M). Write η = ⊕i∈Iηi, with ηi ∈ L2(〈M, eAi〉). Since the M -M -bimodule

L2(〈M, eAi〉) is mixing relative to Ai, we have limn〈unηiu∗n, ηi〉 = 0, for all i ∈ I and so

limn〈unηu∗n, η〉 = 0. Since η ∈ P ′ ∩ M̃ , we have ‖η‖2
2 = limn〈unηu∗n, η〉 = 0. Therefore

P ′ ∩ M̃ = P ′ ∩M . In particular, we get q ∈ M , so that β(v∗q) = β(v∗)q = 0. Hence

v = 0, which is a contradiction.

Observe that Maθ1(Q) is a nonzero M -θ1(Q)-subbimodule of L2(M̃) which is finitely

generated as left M -module, whence we get θ1(Q) �M̃ M . We use the following nota-

tion: for every nonempty finite subset F ⊂ Γ, let Stab(F) = {g ∈ Γ : gF = F} and

M(F) := AF0 o Stab(F). By convention, set M(∅) := L(Γ).

Step 3. — There exists a finite subset F ⊂ Γ such that Q �M M(F).

We prove Step 3 by contradiction and assume that for all finite subset F ⊂ Γ,

we have Q �M M(F). Let vn ∈ U(Q) be a sequence of unitaries such that

limn ‖EM(F)(x
∗vny)‖2 = 0, for all x, y ∈ M , F ⊂ Γ. We upgrade this by showing the

following:

(10) lim
n
‖EM(x∗θ1(vn)y)‖2 = 0,∀x, y ∈ M̃.

This clearly contradicts Step 2. Let F ,G ⊂ Γ be finite (possibly empty) subsets. Define

x =
⊗

g∈F xg ⊗
⊗

g∈Γ\F 1 and y =
⊗

h∈G yh ⊗
⊗

h∈Γ\G 1, where xg, yh ∈ B0 	 θ1(A0)A0.

Observe that it suffices to prove (10) for such x and y since the linear span of all

θ1(A)yM for y of the above form is a ‖ · ‖2-dense subspace of M̃ .

Write vn =
∑

g∈Γ(vn)gug for the Fourier expansion of vn in M , where (vn)g ∈ A.

We have EM(x∗θ1(vn)y) =
∑

g∈ΓEA (x∗θ1((vn)g)σg(y))ug. If gG 6= F , then

EA (x∗θ1((vn)g)σg(y)) = 0. If gG = F , then

EA (x∗θ1((vn)g)σg(y)) = EA

(
x∗θ1

(
EAF0 ((vn)g)

)
σg(y)

)
.
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Take now finitely many g1, . . . , gk ∈ Γ such that giG = F and such that {g ∈ Γ : gG = F}
is the disjoint union of (StabF)g1, . . . , (StabF)gk. Set wn =

∑k
i=1 EM(F)(vnu

∗
gi

)ugi . We

have proven EM(x∗θ1(vn)y) = EM(x∗θ1(wn)y). Since by assumption limn ‖wn‖2 = 0,

we get (10).

Step 4. — We derive a contradiction.

From Step 3, there exists a finite subset F ⊂ Γ such that Q �M M(F). If

F = ∅, then Q �M L(Γ). Since M = A o Γ, this clearly contradicts the

fact that Q ⊂ A is diffuse. Hence F 6= ∅ and since Stab(F) is finite, we get

Q �M AF0 . There exist projections q ∈ Q, r ∈ AF0 , a nonzero partial isometry

v ∈ qMr and a ∗-homomorphism ϕ : qQq → rAF0 r such that xv = vϕ(x), for

all x ∈ qQq. Hence ϕ(qQq) ⊂ rAF0 r is a diffuse subalgebra. A straightfor-

ward computation shows that ϕ(qQq)′ ∩ rMr ⊂ r(
∑

g∈G Aug)r, where G = FF−1.

Since v∗(Q′ ∩M)v ⊂ ϕ(qQq)′ ∩ rMr, we get v∗(Q′ ∩M)v ⊂ r(
∑

g∈G Aug)r. Thus

Q′ ∩ M �M A, which contradicts the fact that Q′ ∩ M has no amenable direct

summand. The proof is complete.

Proof of Theorem 7.1. — Let R ⊂ R(Γ y [0, 1]Γ) be any pmp subequivalence relation.

Write N = L(R) for the von Neumann algebra ofR. Denote by z0 ∈ Z(N) the maximal

central projection for which Nz0 is amenable. We claim that Z(N)(1 − z0) is purely

atomic. Assume that this is not the case. Let q ∈ Z(N)(1−z0) be a nonzero projection

such that Z(N)q is diffuse. Set Q := A(1 − q) ⊕ Z(N)q ⊂ A, which is a diffuse von

Neumann subalgebra of A. Theorem 7.3 implies that Q′ ∩M is amenable and thus Nq

is amenable, which contradicts the maximality of z0.

Write Z(N)(1−z0) =
⊕

n≥1 Czn. Denote by Xn ⊂ [0, 1]Γ the measurableR-invariant

subset corresponding to the central projection zn, that is, 1Xn = zn and L(R|Xn) =

Nzn. We get that R|X0 is hyperfinite and R|Xn is ergodic and non-hyperfinite, for

all n ≥ 1. In particular, it follows that any subequivalence T ⊂ R(Γ y [0, 1]Γ) which

has a diffuse ergodic decomposition must be hyperfinite. Furthermore, we deduce that

R|Xn cannot be written as an increasing union of subequivalence relations with a diffuse

ergodic decomposition (otherwise R|Xn would be hyperfinite). Using Proposition 2.1,

we finally obtain that R|Xn is strongly ergodic, for all n ≥ 1.

8. CO-INDUCED ACTIONS

Ioana [28] used the co-induction technique [20] together with a separability argument

(see Theorem 9.1) to prove that any nonamenable group Γ that contains F2 has un-

countably many non-orbit equivalent actions. First recall the co-induction construction

for a subgroup Λ < Γ. Let α : Λ y (Y, ν) be any free pmp action on the nonatomic

standard probability space. Fix a section s : Γ/Λ → Γ such that s(Λ) = 1Γ. De-

fine the 1-cocycle ω : Γ × Γ/Λ → Λ by ω(g, t) = s(gt)−1gs(t). The co-induced action
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σ = coIndΓ
Λ(α) : Γ y (Y Γ/Λ, νΓ/Λ) is then defined by (σg(y))t = α(ω(g, g−1t))(yg−1t),

for all g ∈ Γ, t ∈ Γ/Λ. In order to prove that any nonamenable group has uncountably

many non-orbit equivalent actions, we review now Epstein’s construction [15] of the

co-induced action for a measurable subgroup Λ <ME Γ.

Let a : Λ y (X,µ) and b : Γ y (X,µ) be free ergodic pmp actions of infinite

countable discrete groups Λ and Γ on the nonatomic standard probability space (X,µ)

such that R(a,Λ) ⊂ R(b,Γ). We will assume that R(a,Λ) has infinite index in R(b,Γ),

that is, µ-almost everyR(b,Γ)-class contains infinitely manyR(a,Λ)-classes. Fix choice

functions (Cn : X → X)n∈N so that every Cn : X → X is Borel; C0 = IdX ; given x ∈ X,

{Cn(x) : n ∈ N} enumerates a tranversal for the R(a,Λ)-classes in the R(b,Γ)-class

of x; and for all m 6= n and x ∈ X, we have Cm(x) 6= Cn(x). Observe that since a is

ergodic, we may assume that the choice functions Cn are one-to-one.

Denote by S∞ the full permutation group of N. Let i : Γ × X → S∞ be the index

cocycle given by the formula

i(g, x)(k) = n⇐⇒ [Ck(x)]R(a,Λ) = [Cn(gx)]R(a,Λ).

Since the action a : Λ y X is assumed to be free, we can then define the Borel map

` : Γ×X → ΛN by the formula

`(g, x)n · Ci(g,x)−1(n)(x) = Cn(gx).

Observe that S∞ acts on ΛN by Bernoulli shift: for all π ∈ S∞ and (λn)n∈N ∈ ΛN,

we have (π · λ)n = λπ−1(n). Denote by S∞ n ΛN the corresponding semi-direct product

group. We finally define the Borel cocycle Ω : Γ×X → S∞ n ΛN by the formula

Ω(g, x) = (i(g, x), `(g, x)).

One checks that Ω satisfies the 1-cocycle relation: for µ-almost every x ∈ X, for all

g, h ∈ Γ, we have Ω(gh, x) = Ω(g, hx)Ω(h, x).

Let now α : Λ y (Y, ν) be any free pmp action on the nonatomic standard

probability space. Using the Borel cocycle Ω, we can define the pmp skew-product

action σ : Γ y (X × Y N, µ× νN) by the formula

gσ · (x, (yn)n∈N) =
(
g · x,Ω(g, x)α

N · (yn)n∈N

)
(11)

=
(
g · x,

(
n 7→ (`(g, x)n)α · yi(g,x)−1(n)

))
.

One checks that this action is independent of the choice of (Cn)n∈N, up to conjugation.

Definition 8.1 (Co-induced action). — Under the previous assumptions, we say that

σ is the co-induced action of α modulo (a, b) and write

σ = coInd(a, b)Γ
Λ(α) : Γ y (X × Y N, µ× νN).

We can view coInd(a, b)Γ
Λ as an operation from the space A(Λ, Y, ν) of pmp actions of

Λ on (Y, ν) to the space A(Γ, X ×Y N, µ× νN) (see [35]). Observe that when regarding

Ω : R(Γ y X) → S∞ n ΛN as a cocycle for the equivalence relation and taking the

restriction Ω|R(Λ y X), the formula (11) also allows to define a skew-product action
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ρ : Λ y (X × Y N, µ × νN) that we will denote by ρ = coInd(a, b)Λ
Λ(α). The action ρ

generates a subequivalence relation of the one generated by σ = coInd(a, b)Γ
Λ(α), that

is, R(ρ,Λ) ⊂ R(σ,Γ). Note that

– b is a quotient of σ with quotient map (x, (yn)n∈N) 7→ x.

– α is a quotient of ρ with quotient map pρ : (x, (yn)n∈N) 7→ y0.

In particular, ρ and σ are free pmp actions. It turns out that proving ergodicity for the

co-induced action σ = coInd(a, b)Γ
Λ(α) is more technical and delicate than in the case of

a genuine subgroup Λ < Γ. Epstein finds an ergodic measure for the co-induced action σ

by analyzing the ergodic decomposition of X with respect to the action b : Γ y X (see

[15, Lemma 2.6]). In [32], Ioana, Kechris and Tsankov circumvent this difficulty by

finding necessary and sufficient conditions on the inclusion R(a,Λ) ⊂ R(b,Γ) which

ensure that the co-induced action σ is mixing, and so ergodic. More precisely, they

obtained the following result (see [32, Theorem 3.3]).

Theorem 8.2 (Mixing co-induced actions). — Let a : Λ y (X,µ) and b : Γ y (X,µ)

be free pmp actions such that b is mixing and R(a,Λ) ⊂ R(b,Γ). Let N = L∞(X)oa Λ

and M = L∞(X)obΓ be the corresponding group measure space von Neumann algebras

so that N ⊂ M . Write (ug)g∈Γ for the unitaries in M implementing the action b.

Denote by EN : M → N the trace-preserving normal conditional expectation. The

following are equivalent:

– limg→∞ ‖EN(ug)‖2 = 0.

– For every free pmp action α : Λ y (Y, ν), the co-induced action coInd(a, b)Γ
Λ(α) is

mixing.

Let ρ = coInd(a, b)Λ
Λ(α), σ = coInd(a, b)Γ

Λ(α) and assume that σ is ergodic. The

following properties hold true (see [15]).

(∗) For any quotient map q : Y → Z from α : Λ y Y to a free pmp action Λ y Z,

we have that

{(x, (yn)n∈N) : q ◦ pρ(gσ · (x, (yn)n∈N)) = q ◦ pρ((x, (yn)n∈N))}

is a µ× νN-null measurable subset, for all g ∈ Γ \ {1Γ}.
(∗∗) For any ρ(Λ)-invariant Borel subset U ⊂ X × Y N of µ× νN-positive measure, the

Borel map pρ|U : U → Y witnesses that α is a quotient of ρ|U .

Gaboriau and Lyons proved that given any nonamenable group Γ, there exist free

pmp actions a : F2 y (X,µ) and b : Γ y (X,µ) such that a is ergodic, b is mixing and

R(a,F2) ⊂ R(b,Γ) (see Theorem 5.3). Epstein, Ioana, Kechris and Tsankov proved

[32, Theorem 3.11] that the inclusion R(a,F2) ⊂ R(b,Γ) can be chosen to satisfy the

assumptions of Theorem 8.2.

Theorem 8.3. — Let Γ be any nonamenable group. Then there exist free pmp actions

a : F2 y (X,µ) and b : Γ y (X,µ) such that a is ergodic, b is mixing, R(a,F2) ⊂
R(b,Γ) and limg→∞ ‖EL∞(X)oF2(ug)‖2 = 0.
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9. UNCOUNTABLY MANY NON-OE ACTIONS

9.1. Separability vs. relative property (T)

Recall that for an inclusion Λ < Γ of countable discrete groups, the pair (Γ,Λ) has

the relative property (T) if for all ε > 0, there exist δ > 0 and a finite subset F ⊂ Γ

such that if π : Γ→ U(H) is a unitary representation and ξ ∈ H is a unit vector which

satisfies ‖π(g)(ξ)−ξ‖ < δ, for all g ∈ F , then there exists a π(Λ)-invariant vector η ∈ H
such that ‖η−ξ‖ < ε. The pair (Z2oSL2(Z),Z2) has the relative property (T) [34, 44].

More generally, for any nonamenable subgroup Γ < SL2(Z), the pair (Z2 o Γ,Z2) has

the relative property (T) [7].

Consider the action SL2(Z) y (T2, λ2) defined by

g · (z1, z2) = (g−1)t
(
z1

z2

)
,∀g ∈ SL2(Z).

One checks that it is a free weakly mixing pmp action. Realize F2 < SL2(Z) as a finite

index subgroup, so that the pair (Z2 o F2,Z
2) has the relative property (T). Write

α : F2 y (T2, λ2) for the restriction.

The following result is due to Ioana [28, Theorem 1.3]. It relies on a separability vs.

(relative) property (T) argument, an idea that goes back to Connes [9] and successfully

used later on by Popa [60] and Gaboriau and Popa in [23].

Theorem 9.1. — Let Γ be any nonamenable group. Let F(Γ) be the class of free

ergodic pmp actions σ : Γ y (X,µ) such that there exists a free pmp action ρ : F2 y
(X,µ) for which the following hold:

1. R(ρ,F2) ⊂ R(σ,Γ).

2. The action α : F2 y T2 is a quotient of the action ρ : F2 y X with quotient map

pρ : X → T2.

3. For all g ∈ Γ \ {1Γ}, the Borel set {x ∈ X : pρ(σ(g)(x)) = pρ(x)} is null.

Let {σi : i ∈ I} ⊂ F(Γ) be an uncountable set of mutually orbit equivalent actions. Then

there exist an uncountable set J ⊂ I and ρj-invariant measurable subsets Xj ⊂ X of

positive measure such that the actions {ρj|Xj : j ∈ J } are mutually conjugate.

Proof. — By assumption, denote by R the unique pmp equivalence relation on (X,µ)

(up to orbit equivalence) such that R = R(σi,Γ), for all i ∈ I. Note that for all i ∈ I,

R(ρi,F2) ⊂ R. Following [16], define a Borel measure ν on R by

ν(W) =

∫
X

|{y : (x, y) ∈ W}|dµ(x),

for every Borel subset W ⊂ R.

For all i ∈ I, denote by pi : X → T2 the quotient map which witnesses that

α : F2 y T2 is a quotient of ρi : F2 y X. Regarding a ∈ Z2 as a character of

T2, define fa,i = a ◦ pi ∈ L∞(X). One checks that for all (a, g) ∈ Z2 o F2 and i ∈ I,

fg(a),i = fa,i◦ρi(g−1). Then for all i, j ∈ I, the map πi,j : Z2oF2 → U(L2(R, ν)) defined
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by πi,j(a, g)(ξ)(x, y) = fa,i(x)fa,j(y)ξ(ρi(g
−1)(x), ρj(g

−1)(y)), for all (a, g) ∈ Z2 o F2,

ξ ∈ L2(R, ν), (x, y) ∈ R, is a unitary representation.

Denote by ∆ = {(x, x) : x ∈ X} ⊂ R the diagonal. Note that 1∆ ∈ L2(R, ν) and

‖1∆‖2 = 1. One checks that for all (a, g) ∈ Z2 o F2, i, j ∈ I,

‖πi,j(a, g)(1∆)− 1∆‖2
2 ≤ 2‖1graph(ρi(g−1)) − 1graph(ρj(g−1))‖2 + 2‖fa,i1∆ − fa,j1∆‖2.

Since the pair (Z2 o F2,Z
2) has the relative property (T), with ε = 1/2, there exist

δ > 0, finite subsets A ⊂ Z2, F ⊂ F2 such that if π : Z2 o F2 → U(H) is a unitary

representation and ξ ∈ H is a unit vector which satisfies ‖π(a, g)(ξ) − ξ‖ < δ, for

all a ∈ A and g ∈ F , then there exists a π(Z2)-invariant vector η ∈ H such that

‖η − ξ‖ < ε. Since I is uncountable and L2(R, ν) is ‖ · ‖2-separable, there exists an

uncountable subset J ⊂ I, such that for all i, j ∈ J ,

‖fa,i1∆ − fa,j1∆‖2 < δ2/4,∀a ∈ A
‖1graph(ρi(g−1)) − 1graph(ρj(g−1))‖2 < δ2/4,∀g ∈ F.

Fix now i, j ∈ J . Since ‖πi,j(a, g)(1∆) − 1∆‖2 < δ, for all (a, g) ∈ A × F , the relative

property (T) gives a πi,j(Z
2)-invariant vector η ∈ L2(R, ν) such that ‖η − 1∆‖2 ≤ 1/2.

Hence, ν-a.s. η(x, y) = fa,i(x)fa,j(y)η(x, y), for all a ∈ Z2. Since η 6= 0, the measurable

subset W = {(x, y) ∈ R : fa,i(x) = fa,j(y),∀a ∈ Z2} satisfies ν(W) > 0. Next we claim

that for µ-almost every x ∈ X, there exists at most one y ∈ X such that (x, y) ∈ W . As-

sume this is not the case. Since R = R(σj,Γ), one can find a measurable subset Y ⊂ X

of µ-positive measure and s 6= t ∈ Γ, such that (x, σj(s)(x)) and (x, σj(t)(x)) ∈ W ,

for all x ∈ Y . In particular, we get a (pj(σj(s)(x))) = a (pj(σj(t)(x))), for all a ∈ Z2,

x ∈ Y . Since characters separate points, it follows that pj(σj(s)(x)) = pj(σj(t)(x)), for

all x ∈ Y . This clearly contradicts item (3) in the statement of the theorem.

Define the measurable subset Xi = {x ∈ X : ∃!y ∈ X, (x, y) ∈ W}. Since ν(W) > 0,

the above claim yields µ(Xi) > 0. If (x, y) ∈ W , then fa,i(x) = fa,j(y), for all a ∈ Z2

and hence fg(a),i(x) = fg(a),j(y), for all a ∈ Z2, g ∈ F2. Since fg(a),i = fa,i ◦ ρi(g−1), we

get

(12) (ρi(g)(x), ρj(g)(y)) ∈ W , ∀g ∈ F2,∀(x, y) ∈ W .

In particular, Xi is a ρi(F2)-invariant measurable subset. Likewise, define

Xj = {y ∈ X : ∃x ∈ Xi, (x, y) ∈ W}. Then Xj is a ρj(F2)-invariant measurable subset.

Define φ : Xi → Xj by y = φ(x) if and only if (x, y) ∈ W . One checks that φ is a pmp

Borel isomorphism. Finally, (12) shows that φ is a conjugacy between ρi|Xi and ρj|Xj,

that is, φ(ρi(g)(x)) = ρj(g)(φ(x)), for all x ∈ Xi, g ∈ F2.

9.2. A continuum of actions

Let Γ be any nonamenable group. Choose a : F2 y (X,µ) and b : Γ y (X,µ)

according to Theorem 8.3. Let π : F2 → U(Hπ) be a unitary representation. Denote

by γπ : F2 y (Zπ, ηπ) the corresponding pmp Gaussian action (see [35, Appendix E]

for more details).
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– If π1 and π2 are unitarily equivalent, then γπ1 and γπ2 are conjugate.

– If we denote by κ(γπ) : F2 → U(L2(Zπ, ηπ)	C1) the associated Koopman repre-

sentation, we have π ⊂ κ(γπ).

Let απ = α × γπ : F2 y (T2 × Zπ, λ2 × ηπ) be the diagonal action. Observe that απ
is a free pmp action and α is a quotient of απ via the quotient map (y, z) 7→ y. Define

the actions σπ := coInd(a, b)Γ
F2

(απ) and ρπ := coInd(a, b)F2
F2

(απ). Recall from Section 8

that σπ is mixing (see Theorem 8.2) and the following hold true:

1. R(ρπ,F2) ⊂ R(σπ,Γ).

2. α is a quotient of ρπ with quotient map

pπ : X × (T2 × Zπ)N 3 (x, (yn, zn)n∈N) 7→ y0 ∈ T2.

3. For all g ∈ Γ \ {1Γ}, the Borel set

{(x, (yn, zn)n∈N) : pπ(gσπ · (x, (yn, zn)n∈N)) = pπ((x, (yn, zn)n∈N))}

is µ× (λ2 × ηπ)N-null (by Condition (∗) from Section 8).

The last result of this text is [32, Theorem 5]. We point out that it was first obtained by

Ioana [28, Section 3] when F2 < Γ and then extended by Epstein [15] when F2 <ME Γ

but without the mixing property.

Theorem 9.2. — Let Γ be any nonamenable group. Then Γ admits uncountably many

non-orbit equivalent free mixing pmp actions.

Proof. — Let I0 be an uncountable set of pairwise non-isomorphic irreducible repre-

sentations of F2 (see [64]). Denote by (U , τ) the standard Borel probability space

(X× (T2×Z)N, µ× (λ2× η)N). By contradiction, assume that there exist an uncount-

able subset {σπ : π ∈ I} ⊂ F(Γ) of mutually orbit equivalent actions. By Theorem

9.1, there exist an uncountable subset J ⊂ I and ρπ-invariant Borel subsets Uπ ⊂ U of

τ -positive measure such that the actions {ρπ|Uπ : π ∈ J } are mutually conjugate. By

Condition (∗∗) from Section 8, we know that α × γπ is a quotient of ρπ|Uπ. Fix now

π0 ∈ J . For all π ∈ J , we have

π ⊂ κ(γπ) ⊂ κ(α× γπ) ⊂ κ(ρπ|Uπ) ∼= κ(ρπ0|Uπ0) ⊂ κ(ρπ0).

Then the separable unitary representation κ(ρπ0) contains uncountably many pairwise

non-isomorphic irreducible subrepresentations π ∈ J , which is a contradiction.
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