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A GLOBAL TORELLI THEOREM

FOR HYPERKÄHLER MANIFOLDS

[after M. Verbitsky]

by Daniel HUYBRECHTS

Compact hyperkähler manifolds are higher-dimensional generalizations of K3 sur-

faces. The classical Global Torelli theorem for K3 surfaces, however, does not hold in

higher dimensions. More precisely, a compact hyperkähler manifold is in general not

determined by its natural weight-two Hodge structure. The text gives an account of

a recent theorem of M. Verbitsky, which can be regarded as a weaker version of the

Global Torelli theorem phrased in terms of the injectivity of the period map on the

connected components of the moduli space of marked manifolds.

1. INTRODUCTION

The Global Torelli theorem is said to hold for a particular class of compact complex

algebraic or Kähler manifolds if any two manifolds of the given type can be distinguished

by their integral Hodge structures.

The most prominent examples for which a Global Torelli theorem has been proved

classically include complex tori and complex curves. Two complex tori T = Cn/Γ

and T ′ = Cn/Γ′ are biholomorphic complex manifolds if and only if there exists an

isomorphism of weight-one Hodge structures H1(T,Z) ∼= H1(T ′,Z). Similarly, two

smooth compact complex curves C and C ′ are isomorphic if and only if there exists

an isomorphism of weight-one Hodge structures H1(C,Z) ∼= H1(C ′,Z) that in addition

respects the intersection pairing.

Here, we are interested in higher-dimensional analogues of the following Global Torelli

theorem for K3 surfaces.

• Two complex K3 surfaces S and S ′ are isomorphic if and only if there exists an iso-

morphism of Hodge structures H2(S,Z) ∼= H2(S ′,Z) respecting the intersection pairing.

The result is originally due to Pjateckĭı-Šapiro and Šafarevič in the algebraic case

and to Burns and Rapoport for K3 surfaces of Kähler type (but as Siu proved later,

every K3 surface is in fact Kähler), see [1, 4] for details and references.

Recall that for complex tori T and T ′, any Hodge isomorphism H1(T,Z) ∼= H1(T ′,Z)

is induced by an isomorphism T ∼= T ′. Also, for complex curves any Hodge isometry
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can be lifted up to sign. A similar stronger form of the Global Torelli theorem holds

for generic K3 surfaces.

• For any Hodge isometry ϕ : H2(S,Z)
∼→ H2(S ′,Z) between two generic (!) K3 sur-

faces, there exists an isomorphism g : S
∼→ S ′ with ϕ = ±g∗.

1.1. Is there a Global Torelli for hyperkähler manifolds?

Compact hyperkähler manifolds are the natural higher-dimensional generalizations

of K3 surfaces and it would be most interesting to establish some version of the Global

Torelli theorem for this important class of Ricci-flat manifolds. In this context, the

second cohomology H2(X,Z) is the most relevant part of cohomology and not the

much larger middle cohomology which one would usually consider for arbitrary compact

Kähler manifolds. As we will recall in Section 2, the second cohomology of a compact

hyperkähler manifold comes with a natural quadratic form, the Beauville–Bogomolov

form, and its canonical weight-two Hodge structure is of a particularly simple type.

So, is a compact hyperkähler manifoldX determined up to isomorphism by its weight-

two Hodge structure H2(X,Z) endowed with the Beauville–Bogomolov form? More

precisely, are two compact hyperkähler manifolds X and X ′ isomorphic if H2(X,Z) and

H2(X ′,Z) are Hodge isometric, i.e. if there exists an isomorphism of weight-two Hodge

structures H2(X,Z) ∼= H2(X ′,Z) that is compatible with the Beauville–Bogomolov

forms on both sides? Unfortunately, as was discovered very early on, a Global Torelli

theorem for compact hyperkähler manifolds cannot hold true literally.

The first counterexample was produced by Debarre in [8]:

• There exist non-isomorphic compact hyperkähler manifolds X and X ′ with isometric

weight-two Hodge structures.

See also [27, Ex. 7.2] for examples with X and X ′ projective (and in fact isomorphic

to certain Hilbert schemes of points on projective K3 surfaces).

In Debarre’s example X and X ′ are bimeromorphic and for quite some time it was

hoped that H2(X,Z) would at least determine the bimeromorphic type of X. As two

bimeromorphic K3 surfaces are always isomorphic, a result of this type would still

qualify as a true generalization of the Global Torelli theorem for K3 surfaces. This

hope was shattered by Namikawa’s example in [22]:

• There exist compact hyperkähler manifolds X and X ′ (projective and of dimension

four) with isometric Hodge structures H2(X,Z) ∼= H2(X ′,Z) but without X and X ′

being bimeromorphic (birational).

Nevertheless, at least for the time being the second cohomology of a compact hy-

perkähler manifold is still believed to encode most of the geometric information on

the manifold. Possibly other parts of the cohomology might have to be added, but no

convincing general version of a conjectural Global Torelli theorem using more than the

second cohomology has been put forward so far.

At the moment it seems unclear what the existence of a Hodge isometry H2(X,Z) ∼=
H2(X ′,Z) between two compact hyperkähler manifolds could mean concretely for the
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relation between the geometry of X and X ′ (but see Corollary 6.5 for special examples).

However, rephrasing the classical Torelli theorem for K3 surfaces in terms of moduli

spaces suggests a result that was eventually proved by Verbitsky in [25].

1.2. Global Torelli via moduli spaces

The following rather vague discussion is meant to motivate the main result of [25] to

be stated in the next section. The missing details and precise definitions will be given

later.

1.2.1. We start by rephrasing the Global Torelli theorem for K3 surfaces using the

moduli space M of marked K3 surfaces and the period map P : M → P(Λ ⊗ C). A

marked K3 surface (S, φ) consists of a K3 surface S and an isomorphism of lattices

φ : H2(S,Z)
∼→ Λ, where Λ := 2(−E8) + 3U is the unique even unimodular lattice of

signature (3, 19). Two marked K3 surfaces (S, φ) and (S ′, φ′) are isomorphic if there

exists an isomorphism (i.e. a biholomorphic map) g : S
∼→ S ′ with φ ◦ g∗ = φ′. Then by

definition M = {(S, φ)}/∼=.

The Global Torelli theorem for K3 surfaces is equivalent to the following statement.

• The moduli space M has two connected components interchanged by (S, φ) 7→
(S,−φ) and the period map

P : M→ DΛ := {x ∈ P(Λ⊗ C) | x2 = 0, (x.x̄) > 0}, (S, φ) 7→ [φ(H2,0(S))]

is generically injective on each of the two components.

Remark 1.1. — Injectivity really only holds generically, i.e. for (S, φ) in the comple-

ment of a countable union of hypersurfaces (cf. Remark 3.2). This is related to the

aforementioned stronger form of the Global Torelli theorem being valid only for generic

K3 surfaces.

Let us now consider the natural action

O(Λ)×M→M, (ϕ, (S, φ)) 7→ (S, ϕ ◦ φ).

For any (S, φ) ∈ Mo in a connected component Mo of M the subgroup of O(Λ) that

fixes Mo is φ◦Mon(X)◦φ−1, where the monodromy group Mon(S) ⊂ O(H2(S,Z)) is by

definition generated by all monodromies π1(B, t)→ O(H2(S,Z)) induced by arbitrary

smooth proper families X → B with Xt = S.

The transformation −id ∈ O(Λ) induces the involution (S, φ) 7→ (S,−φ) that inter-

changes the two connected components and, as it turns out, there is essentially no other

ϕ ∈ O(Λ) with this property. This becomes part of the following reformulation of the

Global Torelli theorem for K3 surfaces:

• Each connected component Mo ⊂ M maps generically injectively into DΛ and for

any K3 surface S one has O(H2(S,Z))/Mon(S) = {±1}.

In order to show that this version implies the one above, one also needs the rather

easy fact that any two K3 surfaces S and S ′ are deformation equivalent, i.e. that there
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exist a smooth proper family X → B over a connected base and points t, t′ ∈ B such

that S ∼= Xt and S ′ ∼= Xt′ . In particular, all K3 surfaces are realized by complex

structures on the same differentiable manifold.

1.2.2. Let us try to generalize the above discussion to higher dimensions. Restricting to

compact hyperkähler manifolds X of a fixed deformation class, the isomorphism type,

say Λ, of the lattice realized by the Beauville–Bogomolov form on H2(X,Z) is unique,

cf. Section 2. So the moduli space MΛ of Λ-marked compact hyperkähler manifolds

of fixed deformation type (the latter condition is not reflected by the notation) can be

introduced, cf. Section 4.2 for details.

For the purpose of motivation let us consider the following two statements. Both are

false (!) in general, but the important point here is that they are equivalent and that

the first half of the second one turns out to be true.

• (Global Torelli, standard form) Any Hodge isometry H2(X,Z) ∼= H2(X ′,Z) between

generic X and X ′ can be lifted up to sign to an isomorphism X ∼= X ′.

• (Global Torelli, moduli version) i) On each connected component Mo
Λ ⊂ MΛ the

period map P : Mo
Λ → DΛ is generically injective. ii) For any hyperkähler manifold X

parametrized by MΛ one has O(H2(X,Z))/Mon(X) = {±1}.

Remark 1.2. — In both statements, generic is meant in the sense of Remark 1.1. The

standard form would then indeed imply that arbitrary Hodge isometric X and X ′

are bimeromorphic. For details on the passage from generic to arbitrary hyperkähler

manifolds and thus to the bimeromorphic version of the Global Torelli theorem, see

Section 6.1.

Only rewriting the desired Global Torelli theorem in its moduli version allows one to

pin down the reason for its failure in higher dimensions: As shall be explained below,

condition i) is always fulfilled and this is the main result of [25]. It is condition ii) which

need not hold. Indeed, a priori the image of the natural action Diff(X)→ O(H2(X,Z))

can have index larger than two and hence Mon(X) will.

1.3. Main result

The following is a weaker version of the main result of [25]. Teichmüller spaces

are here replaced by the more commonly used moduli spaces of marked manifolds.

Additional problems occur in the Teichmüller setting which have been addressed in a

more recent version of [25] (see Remark 4.8).

Theorem 1.3 (Verbitsky). — Let Λ be a lattice of signature (3, b−3) and let Mo
Λ be a

connected component of the moduli space MΛ of marked compact hyperkähler manifolds

(X,φ : H2(X,Z)
∼→ Λ). Then the period map

P : Mo
Λ → DΛ ⊂ P(Λ⊗ C), (X,φ) 7→ [φ(H2,0(X))]

is generically injective.
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More precisely, all fibers over points in the complement of the countable union of

hyperplane sections DΛ ∩
⋃

06=α∈Λ α
⊥ consist of exactly one point. For the precise

definition of the moduli space of marked hyperkähler manifolds MΛ, the period map P ,

and the period domain DΛ, we refer to the text.

The following results are the starting point for the proof of the theorem:

– The period map P is étale, i.e. locally an isomorphism of complex manifolds. This

is the Local Torelli theorem, see [2] and Section 4.1.

– The period domain DΛ is known to be simply connected. This is a standard fact,

see Section 3.1.

– The period map P is surjective on each connected component. The surjectivity of

the period map has been proved in [17], see Section 5.2.

These three facts suggest that MΛ may be a covering space of the simply connected

period domain DΛ, which would immediately show that each connected component

maps isomorphically onto DΛ. There are however two issues that have to be addressed:

• The moduli space MΛ is a complex manifold, but it is not Hausdorff.

• Is the period map P : MΛ → DΛ proper?

Verbitsky deals with both questions. First one passes from MΛ to a Hausdorff space

MΛ by identifying all inseparable points in MΛ. The new space MΛ still maps to DΛ

via the period map. This first step is technically involved, but it is the properness of

P : MΛ → DΛ that is at the heart of Theorem 1.3.

In this text we give a complete and rather detailed proof of Verbitsky’s theorem,

following the general approach of [25]. Some of the arguments have been simplified

and sometimes (e.g. in Section 3) we chose to apply more classical techniques. Our

presentation of the material is very close to Beauville’s account of the theory of K3

surfaces in [1]. Unfortunately, due to time and space restrictions we will not be able to

discuss the interesting consequences of Verbitsky’s theorem in any detail. Some of the

beautiful applications will be touched upon in Section 6.
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2. RECOLLECTIONS

We briefly recall the main definitions and facts. For an introduction with more details

and references, see e.g. [13].

Definition 2.1. — A compact hyperkähler (or irreducible holomorphic symplectic)

manifold is a simply connected compact complex manifold of Kähler type X such that

H0(X,Ω2
X) is spanned by an everywhere non-degenerate two-form σ.

As long as no hyperkähler metric is fixed, one should maybe, more accurately, speak of

compact complex manifolds of hyperkähler type but we will instead mention explicitly

when a hyperkähler metric is chosen. Recall that by Yau’s solution of the Calabi

conjecture, any Kähler class α ∈ H1,1(X,R) can be uniquely represented by the Kähler

form of a Ricci-flat Kähler metric g. In fact, under the above conditions on X, the

holonomy of such a metric is Sp(n), where 2n = dimC(X). In particular, besides the

complex structure I defining X, there exist complex structures J and K satisfying the

usual relation K = I ◦ J = −J ◦ I and such that g is also Kähler with respect to them.

As will be recalled in Section 4.4, there is in fact a whole sphere of complex structures

compatible with g.

Example 2.2. — K3 surfaces are the two-dimensional hyperkähler manifolds. Recall

that a compact complex surface S is a K3 surface, if the canonical bundle Ω2
S is trivial

and H1(S,OS) = 0. It is not difficult to prove that K3 surfaces are in fact simply

connected. That they are also of Kähler type, a result due to Siu, is much deeper, see

[1] for the proof and references.

The second cohomology H2(X,Z) of a generic compact Kähler manifold can be en-

dowed with a quadratic form, the Hodge–Riemann pairing, which in dimension > 2

depends on the choice of a Kähler class and, therefore, is usually not integral. For a

compact hyperkähler manifold X the situation is much better. There exists a primi-

tive integral quadratic form qX on H2(X,Z), the Beauville–Bogomolov form, the main

properties of which can be summarized as follows:

• qX is non-degenerate of signature (3, b2(X)− 3).

• There exists a positive constant c such that q(α)n = c
∫
X
α2n for all classes

α ∈ H2(X,Z), i.e. up to scaling qX is a root of the top intersection product on

H2(X,Z).

• The decomposition H2(X,C) = (H2,0 ⊕ H0,2)(X) ⊕ H1,1(X) is orthogonal with

respect to (the C-linear extension of) qX . Moreover, qX(σ) = 0 and qX(σ, σ̄) > 0.

The second property ensures that qX is invariant under deformations, i.e. if X → B

is a smooth family of compact hyperkähler manifolds over a connected base B, then

qXt = qXs for all fibres Xs,Xt ⊂ X . Here, an isomorphism H2(Xs,Z) ∼= H2(Xt,Z) is

obtained by parallel transport along a path connecting s and t. In fact, at least for
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b2(X) 6= 6 the primitive quadratic form qX only depends on the underlying differentiable

manifold.

The last property shows that the weight-two Hodge structure on H2(X,Z) endowed

with qX is uniquely determined by the line σ ∈ H2,0(X) ⊂ H2(X,C).

Note that the lattice Λ defined by (H2(X,Z), qX) is in general not unimodular and

there is no reason why it should always be even (although in all known examples it is).

No classification of lattices that can be realized by the Beauville–Bogomolov form on

some compact hyperkähler manifold is known. Also note that no examples of compact

hyperkähler manifolds are known that would realize the same lattice without being

deformation equivalent and hence diffeomorphic. For a K3 surface S the Beauville–

Bogomolov form coincides with the intersection form on H2(S,Z) which is isomorphic

to the unique even unimodular lattice of signature (3, 19).

Example 2.3. — i) The Hilbert scheme (or Douady space) Hilbn(S) parametrizing sub-

schemes Z ⊂ S of length n in a K3 surface S is a compact hyperkähler manifold of

dimension 2n (see [2]). Moreover, (H2(Hilbn(S),Z), q) ∼= H2(S,Z)⊕ Z(−2(n− 1)) for

n > 1 and in particular b2(Hilbn(S)) = 23. Note that Hilbn(S) can be deformed to

compact hyperkähler manifolds which are not isomorphic to the Hilbert scheme of any

K3 surface.

ii) If T is a two-dimensional complex torus C2/Γ and Σ : Hilbn(T ) → T is the

morphism induced by the additive structure of T , then the generalized Kummer variety

Kn−1(T ) := Σ−1(0) is a compact hyperkähler manifold of dimension 2n−2. In this case,

(H2(Kn−1(T ),Z), q) ∼= H2(T,Z)⊕Z(−2n) for n > 2 and thus b2(Kn−1(T )) = 7. Again,

the generic deformation of Kn−1(T ) is a compact hyperkähler manifold not isomorphic

to any generalized Kummer variety itself.

iii) The only other known examples were constructed by O’Grady, see [23, 24]. They

are of dimension six, resp. ten.

3. PERIOD DOMAIN AND TWISTOR LINES

3.1. Period domain

Consider a non-degenerate lattice Λ with a quadratic form q (not necessarily uni-

modular or even) of signature (3, b − 3). Later Λ will be H2(M,Z) of a hyperkähler

manifold M endowed with the Beauville–Bogomolov form.

The period domain associated to Λ is the set

D := DΛ := {x ∈ P(Λ⊗ C) | q(x) = 0 and q(x, x̄) > 0}.

The quadratic form q is extended C-linearly. Thus, D is an open subset of the smooth

quadric hypersurface defined by q(x) = 0 and, in particular, D has the structure of a

complex manifold of dimension b− 2 which is obviously Hausdorff.
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The global structure of the period domain D is also well-known. Let Grpo(2, V )

be the Grassmannian of oriented positive planes in a real vector space V en-

dowed with a quadratic form and consider Rb with the diagonal quadratic form

(+1,+1,+1,−1, . . . ,−1). See e.g. [1, Exp. VIII] for the proof of the following.

Proposition 3.1. — There exist diffeomorphisms

D ∼= Grpo(2,Λ⊗ R) ∼= Grpo(2,Rb) ∼= O(3, b− 3)/ (SO(2)×O(1, b− 3)) .

In particular, D is connected with π1(D) = {1}. �

The first isomorphism is given by mapping x ∈ D to the plane P (x) ⊂ Λ⊗R spanned

by the real and imaginary part of x. For the converse, choose an orthonormal positive

oriented basis a, b ∈ P of a given plane P ∈ Grpo(Λ⊗R) and map P to a+ ib ∈ D. For

the last two diffeomorphisms choose an isometry Λ⊗R ∼= Rb. In the following, we shall

often tacitly pass from one description to the other and will not distinguish between

the point x ∈ D and its associated plane P (x) ∈ Grpo(2,Λ⊗ R).

Remark 3.2. — For any 0 6= α ∈ Λ one can consider the intersection D ∩ α⊥, where

α⊥ is the hyperplane {x ∈ P(Λ⊗C) | q(x, α) = 0}. Thus D ∩ α⊥ ⊂ D is non-empty of

complex codimension one.

Moreover, for any open subset U ⊂ D the set U \
⋃

06=α∈Λ α
⊥ is dense in U . Indeed,

pick a generic one-dimensional disk ∆ through a given point x ∈ U . Then each α⊥

intersects ∆ in finitely many points and since Λ is countable, the intersection ∆∩
⋃
α⊥

is at most countable. But the complement of any countable set inside ∆ is dense in ∆.

3.2. Twistor lines

A subspace W ⊂ Λ⊗R of dimension three such that q|W is positive definite is called

a positive three-space.

Definition 3.3. — For any positive three-space W one defines the associated twistor

line TW as the intersection

TW := D ∩ P(W ⊗ C).

For W a positive three-space, P(W ⊗C) is a plane in P(Λ⊗C) and TW is a smooth

quadric in P(W ⊗ C) ∼= P2. Thus, as a complex manifold TW is simply P1.

Two distinct points x, y ∈ D are contained in one twistor line if and only if their

associated positive planes P (x) and P (y) span a positive three-space 〈P (x), P (y)〉 ⊂
Λ⊗ R.

Definition 3.4. — A twistor line TW is called generic if W⊥ ∩ Λ = 0.

Remark 3.5. — One easily checks that TW is generic if and only if there exists a vector

w ∈ W with w⊥ ∩ Λ = 0, which is also equivalent to the existence of a point x ∈ TW
such that x⊥ ∩ Λ = 0. In fact, if W is generic, then for all except a countable number

of points x ∈ TW one has x⊥ ∩ Λ = 0 (cf. Remark 3.2).
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Definition 3.6. — Two points x, y ∈ D are called equivalent (resp. strongly equiva-

lent) if there exists a chain of twistor lines (resp. generic twistor line) TW1 , . . . , TWk
and

points x = x1, . . . , xk+1 = y with xi, xi+1 ∈ TWi
.

The following is well-known, see [1].

Proposition 3.7. — Any two points x, y ∈ D are (strongly) equivalent.

Proof. — Since D is connected, it suffices to show that each equivalence class is open.

Let us deal with the weak version first.
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Consider x ∈ D and choose a basis for the corresponding positive plane P (x) = 〈a, b〉.
Here and in the sequel, the order of the basis vector is meant to fix the orientation of

the plane. Pick c such that 〈a, b, c〉 is a positive three-space. Then for (a′, b′) in an open

neighbourhood of (a, b) the spaces 〈a, b′, c〉 and 〈a′, b′, c〉 are still positive three-spaces.

Let T1, T2, and T3 be the twistor lines associated to 〈a, b, c〉, 〈a, b′, c〉, resp. 〈a′, b′, c〉.
Then P (x) = 〈a, b〉, 〈a, c〉 ∈ T1, 〈a, c〉, 〈b′, c〉 ∈ T2, and 〈b′, c〉, 〈a′, b′〉 ∈ T3. Thus, x and

〈a′, b′〉 are connected via the chain of the three twistor lines T1, T2, and T3.

For the strong equivalence, choose in the above argument c such that c⊥ ∩ Λ = 0.

Then the twistor lines associated to the positive three-spaces 〈a, b, c〉, 〈a, b′, c〉, and

〈a′, b′, c〉 are all generic (see Remark 3.5).

This easy observation is crucial for the global surjectivity of the period map (see

Section 5.2). In order to prove that the period map is a covering map, one also needs a

local version of the surjectivity (cf. Section 5.4) which in turn relies on a local version

of Proposition 3.7. This shall be explained next.

Convention 3.8. — In the following, we consider balls in D and write B ⊂ B̄ ⊂ D

when B̄ is a closed ball in a differentiable chart in D. In particular, B will be the open

set of interior points in B̄.
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Definition 3.9. — Two points x, y ∈ B ⊂ B̄ ⊂ D are called equivalent (resp. strongly

equivalent) as points in B if there exist a chain of (generic) twistor lines TW1 , . . . , TWk

and points x = x1, . . . , xk+1 = y ∈ B such that xi, xi+1 are contained in the same

connected component of TWi
∩B.

Note that a priori two points x, y ∈ B could be (strongly) equivalent as points in

D without being (strongly) equivalent as points in B. In the local case, only strong

equivalence will be used.

The local version of Proposition 3.7 is the following.

Proposition 3.10. — For a given ball B ⊂ B̄ ⊂ D any two points x, y ∈ B are

strongly equivalent as points in B.

Proof. — One again shows that each equivalence class is open which together with

the connectedness of the ball B proves the result. The proof is a modification of the

argument for Proposition 3.7 and we shall use the same notation. The main difference

is that a given positive plane 〈a, b〉 is connected to any nearby point by a chain of four

generic twistor lines instead of just three. As the proof given here deviates from the

original more technical one in [25], we shall spell out all the (mostly elementary) details.

Let x ∈ B and let a, b be an oriented basis of the associated plane P (x). The open

sets Uε := {〈a′, b′〉 | ‖a − a′‖ < ε, ‖b − b′‖ < ε} form a basis of open neighbourhoods

of x ∈ D. Here ‖ ‖ is an arbitrary fixed norm on the real vector space Λ⊗ R. Strictly

speaking, Uε is an open set of planes, but when we write 〈a′, b′〉 ∈ Uε we implicitly mean

that the vectors a′, b′ satisfy the two inequalities defining Uε.

Fix 0 < ε < 1 small enough such that x ∈ Uε ⊂ B. Then there exist

〈d, c〉 ∈ Uε such that 〈a, b, c〉, 〈a, b, d〉 are positive three-spaces. Indeed, if an

isometry Λ⊗ R ∼= Rb is chosen such that (a, b) = (e1, e2), then take c = e2 + (ε/2)e3

and d = e1 + (ε/2)e3. Here e1, . . . , eb is the standard basis of Rb endowed with the

quadratic form diag(1, 1, 1,−1, . . . ,−1). Moreover, after adding small generic vectors,

we can assume that c⊥ ∩ Λ = 0 = d⊥ ∩ Λ.

To be a positive three-space is an open condition. Thus there exists 0 < δ < ε such

that for all 〈a′, b′〉 ∈ Uδ ⊂ Uε ⊂ B the spaces 〈a′, b′, c〉 and 〈a′, b′, d〉 are still positive

three-spaces.

��
��

��
��

��
��

��
��

��

XXXXXXXXXXXXXXXXXX

���
���

���
���

���
���

x

〈a, c〉

〈a, b′〉
〈d, b′〉

〈a′, b′〉

T1

T2

T3

T4

r r
r

r
r

Uε



1040–11

For any given 〈a′, b′〉 ∈ Uδ, let T1, . . . , T4 be the generic (!) twistor lines associated

to the four positive three-spaces 〈a, b, c〉, 〈a, b′, c〉, 〈a, b′, d〉, resp. 〈a′, b′, d〉. (Use that

indeed 〈a, b〉, 〈a, b′〉, 〈a′, b′〉 ∈ Uδ.)
Let x1 := x = 〈a, b〉, x2 := 〈a, c〉, x3 := 〈a, b′〉, x4 := 〈d, b′〉, and x5 := 〈a′, b′〉.

Then xi, xi+1 ∈ Ti ∩ B. This would show that x and 〈a′, b′〉 are strongly equivalent as

points in B if indeed xi and xi+1 are contained in the same connected component of

Ti∩B (in fact, as we will see, of Ti∩Uε). The verification of this is straightforward. E.g.

x2 = 〈a, c〉 and x3 = 〈a, b′〉 can be connected via 〈a, c+t(b′−c)〉 with t ∈ [0, 1]. This path

is contained in T2∩B as ‖c+t(b′−c)−b‖ = ‖(1−t)(c−b)+t(b′−b)‖ < (1−t)ε+tδ ≤ ε.

A much easier related observation is the following:

Lemma 3.11. — Consider a ball B ⊂ B̄ ⊂ D and let x ∈ B̄ \ B. Then there exists

a generic twistor line TW ⊂ D such that x ∈ ∂B ∩ TW is in the boundary of B ∩ TW .

In other words, the boundary of B can be connected to its interior by means of generic

twistor lines.

Proof. — Consider the tangent space Tx∂B of the boundary ∂B in the point x ∈ ∂B.

Then Tx∂B is a subspace of real dimension 2b− 5 of the tangent space TxD which is of

real dimension 2b − 4. Describing D as the Grassmannian of oriented positive planes,

yields a natural identification of TxD with Hom(P (x),Λ⊗ R/P (x)).

Under this identification, the tangent space of a twistor line TW through x corresponds

to the two-dimensional real subspace Hom(P (x),Rα), where we write W = P (x)⊕Rα
for some positive α ∈ P (x)⊥ and identify Λ⊗R/P (x) with P (x)⊥. Conversely, the choice

of α defines a twistor line through x and if α is chosen generically then α⊥ ∩Λ = 0 and

Hom(P (x),Rα) 6⊂ Tx∂B, i.e. the corresponding TW is a generic twistor line through x

with TW ∩B 6= ∅.

4. PERIOD MAP

4.1. Local Torelli theorem

For any compact complex manifold X there exists a versal deformation X → Def(X).

As usual, Def(X) is understood as a germ of a complex space which can be chosen

arbitrarily small. Since H0(X, TX) = 0 for X a compact hyperkähler manifold, the

deformation is in this case in fact universal. Moreover, since any small deformation of

X is again compact hyperkähler, one has h1(Xt, TXt) = h1(Xt,ΩXt) = h1,1(Xt) ≡ const

and hence X → Def(X) is universal for any of its fibers Xt. For a survey of Kuranishi’s

results on deformation theory see e.g. [11].

Although H2(X, TX) need not be trivial for a compact hyperkähler manifold, the base

Def(X) is smooth of dimension b2(X)− 2 = h1(X, TX). This is a result of Bogomolov

[5], which can also be seen as a special case of the Tian–Todorov unobstructedness

result for Kähler manifolds with trivial canonical bundle.



1040–12

Classical Hodge theory provides us with a holomorphic map

P : Def(X)→ P(H2(X,Z)), t 7→ [H2,0(Xt)]

for which one uses the canonical identification H2(X,Z) ∼= H2(Xt,Z) via parallel trans-

port which respects the Beauville–Bogomolov forms qX , resp. qXt . As qX(σXt) =

qXt(σXt) = 0 and qX(σXt , σ̄Xt) = qXt(σXt , σ̄Xt) > 0, the period map takes values in

the period domain

DX := DH2(X,Z) ⊂ P(H2(X,C)).

The following result was proved in [2].

Theorem 4.1 (Local Torelli theorem). — The period map

P : Def(X)→ DX ⊂ P(H2(X,C))

is biholomorphic onto an open subset of the period domain DX . �

4.2. Moduli space of marked hyperkähler manifolds

For any given non-degenerate lattice Λ of signature (3, b− 3) one defines the moduli

space of Λ-marked hyperkähler manifolds as

MΛ := {(X,φ)}/∼=.

Here, X is a compact hyperkähler manifold and φ : H2(X,Z) ∼= Λ is an isometry

between H2(X,Z) endowed with the Beauville–Bogomolov pairing and the lattice Λ.

Two Λ-marked hyperkähler manifolds (X,φ) and (X ′, φ′) are isomorphic, (X,φ) ∼
(X ′, φ′), if there exists a biholomorphic map g : X

∼→ X ′ such that φ ◦ g∗ = φ′.

Remark 4.2. — For most lattices Λ one expects MΛ = ∅; at least very few lattices are

known that are realized. On the other hand, in all known examples the lattice Λ deter-

mines the diffeomorphism type of X. The latter suggests to actually fix the underlying

real manifold M , to put Λ = H2(M,Z), and to consider

MM := {(X,φ) | X ∼diff M}/∼= ⊂MΛ

as the space of marked hyperkähler manifolds X diffeomorphic to M (but without fixing

the diffeomorphism). As we shall eventually restrict to a connected component of the

moduli space and MM is a union of connected components of MΛ, one can work with

either of the two moduli spaces, MM or MΛ.

The following is a well-known generalization of a construction used for K3 surfaces

(see [1] or [16, Prop. 7.7]).

Proposition 4.3. — The moduli space of Λ-marked hyperkähler manifolds MΛ has

the structure of a complex manifold of dimension b − 2. For any (X,φ) ∈ MΛ, there

is a natural holomorphic map Def(X) ↪→ MΛ identifying Def(X) with an open neigh-

bourhood of (X,φ) in MΛ.
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Proof. — The base of the universal deformation X → Def(X) of a compact hyperkähler

manifold X parametrized by MΛ can be thought of as a small disk of dimension b− 2.

A marking φ of X naturally induces markings φt of all the fibers Xt and by the Local

Torelli Theorem 4.1 the period map P : Def(X)→ D ⊂ P(Λ⊗C) defined by φ is a local

isomorphism. Hence, for t0 6= t1 ∈ Def(X) the fibers Xt0 and Xt1 with the markings φt0
and φt1 , respectively, are non-isomorphic as marked manifolds.

Thus, the base space Def(X) can be regarded as a subset of MΛ containing (X,φ).

For (X,φ), (X ′, φ′) ∈ MΛ consider the intersection Def(X) ∩ Def(X ′), which might of

course be empty. Since X → Def(X) is a universal deformation for each of its fibers

Xt (and similarly for X ′ → Def(X ′)), this is an open subset of Def(X) and Def(X ′) on

which the two induced complex structures coincide. Therefore, the complex structures

of the deformation spaces Def(X) for all X parametrized by MΛ glue to a complex

structure on MΛ. Since Def(X) is smooth, also MΛ is smooth.

Remark 4.4. — Two words of warning are in order at this point. Firstly, MΛ is a

complex manifold but in general it is not Hausdorff. Second, the universal families

X → Def(X) and X ′ → Def(X ′) do not necessarily glue over the intersection Def(X)∩
Def(X ′) in MΛ. This is due to the possible existence of automorphisms acting trivially

on the second cohomology. See [3] for explicit examples.

By the very construction of the complex structure on MΛ, the local period maps

P : Def(X)→ DX ⊂ P2(H2(X,C)) glue to the global period map

P : MΛ → P(Λ⊗ C).

The global period map takes values in the period domain D ⊂ P(Λ ⊗ C) (see Section

3.1) and the Local Torelli Theorem 4.1 immediately gives

Corollary 4.5. — The period map P : MΛ → D is locally biholomorphic. �

4.3. The moduli space is made Hausdorff

As alluded to before, the moduli space of marked hyperkähler manifolds MΛ need

not be Hausdorff. This phenomenon is well-known for K3 surfaces and it cannot be

avoided in higher dimensions either.

Recall that a topological space A is Hausdorff if for any two points x 6= y ∈ A there

exist disjoint open sets x ∈ Ux ⊂ A and y ∈ Uy ⊂ A. If Ux ∩ Uy 6= ∅ for all open

neighbourhoods x ∈ Ux and y ∈ Uy, then x and y are called inseparable and we write

x ∼ y. Clearly, x ∼ x for all x and x ∼ y if and only if y ∼ x, i.e. ∼ is reflexive and

symmetric. But in general x ∼ y ∼ z does not imply x ∼ z, i.e. ∼ may fail to be

transitive, in which case it is not an equivalence relation.

Restricting to our situation at hand, we shall define an a priori stronger relation as

follows.
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Definition 4.6. — For x, y ∈MΛ with P(x) = P(y) ∈ D we say x ≈ y if there exist

an open neighbourhood U of 0 := P(x) = P(y) ∈ D and holomorphic sections sx, sy of

P : P−1(U)→ U such that:

i) sx = sy on a dense open subset U0 ⊂ U and

ii) sx(0) = x and sy(0) = y.

In order to show that ∼ and ≈ actually coincide, we need to recall the following

result from [17].

Proposition 4.7. — Suppose (X,φ) and (Y, φ′) correspond to inseparable distinct

points x, y ∈MΛ. Then X and Y are bimeromorphic and P(x) = P(y) is contained in

D ∩ α⊥ for some 0 6= α ∈ Λ.

Proof. — The first part is [17, Thm. 4.3]. The bimeromorphic correspondence is con-

structed roughly as follows. If x ∼ y, then there exists a sequence ti ∈MΛ converging

simultaneously to x and y. For the universal families X and Y of X, resp. Y , this cor-

responds to isomorphisms gi : Xti → Yti compatible with the markings of Xti and Yti .
Then the graphs Γgi are shown to converge to a cycle Γ = Z +

∑
Yk ⊂ X × Y of which

the component Z defines a bimeromorphic correspondence and the components Yk do

not dominate neither of the two factors.

If Z is not the graph of an isomorphism, then the image in X of curves contracted

by Z → Y describes curves in X. Thus H2n−1,2n−1(X,Z) 6= 0 and by duality also

H1,1(X,Z) 6= 0. Hence there exists a class 0 6= α ∈ Λ with φ−1(α) ∈ H1,1(X) and,

therefore, P(x) ∈ D ∩ α⊥.

Suppose Z is the graph of an isomorphism. Consider the action of [Z]∗ +
∑

[Yk]∗
on Λ (via the given markings φ and φ′). If the image of some Yk in X and Y is of

codimension ≥ 2, then [Yk]∗ acts trivially on Λ. If this is the case for all [Yk], then

[Z]∗ = [Γ]∗ = [Γgi ]∗ on Λ and, since the gi are compatible with the markings, the latter

is in fact the identity. But then Z is the graph of an isomorphism X ∼= Y that is

compatible with the markings φ, φ′ and, therefore, x = y. Contradiction.

If one of the Yk maps onto a divisor in X or Y , then H1,1(X,Z) 6= 0 or, equivalently,

H1,1(Y,Z) 6= 0. So again in this case P(x) = P(y) ∈ D ∩ α⊥ for some 0 6= α ∈ Λ.

Remark 4.8. — If one tries to apply the same argument to the Teichmüller space

Teich(M), then one needs to show the following: If Z defines an isomorphism and the

Yi have images of codimension ≥ 2, then the isomorphism defined by Z is in fact given

by a diffeomorphism in the identity component Diff(M)0. This issue was addressed in

a more recent version of [25].

Note that for K3 surfaces Z always defines an isomorphism and that, a priori, in

higher dimensions Z could define an isomorphism without any of the components Yi
mapping onto a divisor.
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Proposition 4.9. — i) ≈ is an open equivalence relation.

ii) x ≈ y if and only if x ∼ y.

iii) ∼ is an open equivalence relation.

Proof. — i) Again, ≈ is reflexive and symmetric by definition. Let us show that it is

also transitive. Assume x ≈ y ≈ z and choose for x ≈ y a neighbourhood 0 := P(x) =

P(y) ∈ U ⊂ D and sections sx, sy as in Definition 4.6. Similarly for y ≈ z, choose a

neighbourhood 0 = P(y) = P(z) ∈ U ′ ⊂ D and sections ty, tz. Replacing U and U ′ by

their intersection, we may in fact assume U = U ′.

Then sy(U) and ty(U) are both open neighbourhoods of y and hence sy(U) ∩ ty(U)

is. Since P is a local homeomorphism, this also shows that sy and ty coincide on the

open neighbourhood Ũ := P(sy(U) ∩ ty(U)) ⊂ U of 0. Since sx and sy coincide on a

dense open subset of U , they also coincide on a dense open subset of Ũ . Similarly for

ty and tz. Together with sy|Ũ = ty|Ũ this shows x ≈ z.

Recall that an equivalence relation ≈ on a topological space A is open if the projection

A → A/≈ is open. Equivalently, an equivalence relation ≈ is open if for all x ≈ y and

any open neighbourhood x ∈ Vx ⊂ A, there exists an open neighbourhood y ∈ Vy ⊂ A

such that for any y′ ∈ Vy one finds an x′ ∈ Vx with x′ ≈ y′. In our case, let Vy :=

sy(P(Vx)∩U). Indeed, the dense open subset U0 on which sx = sy (see Definition 4.6, ii))

intersects the image of P(Vy) in a dense open subset and hence sx(P(y′)) ≈ sy(P(y′))

for all y′ ∈ Vy.

ii) As x ≈ y clearly implies x ∼ y, we only need to show the converse. So let x ∼ y.

Then 0 := P(x) = P(y). Pick an open neighbourhood 0 ∈ U ⊂ D of 0 and holomorphic

sections sx, sy : U → MΛ with sx(0) = x and sy(0) = y. Since x ∼ y, the intersection

V := sx(U) ∩ sy(U) cannot be empty.

In order to show that x ≈ y, it suffices to show that the open subset U0 := P(V ) is

dense in U . If for x′ ∈ sx(U) and y′ ∈ sy(U) one has t := P(x′) = P(y′) ∈ ∂U0 (the

boundary of U0 in U), then x′ ∼ y′ and x′ 6= y′.

By Proposition 4.7 this implies that t is contained in D∩α⊥ for some class 0 6= α ∈ Λ.

Hence ∂U0 ⊂
⋃

06=α∈Λ α
⊥. This is enough to conclude that U0 is dense in U . Indeed,

suppose U \ U0 6= ∅. Then connect a generic point in U0 via a one-dimensional disk

∆ ⊂ U with a generic point in the open subset U \U0. Then ∆∩∂U0 ⊂ ∆∩
⋃

06=α∈Λ α
⊥

is countable and can therefore not separate the two disjoint open sets ∆ ∩ U0 and

∆ ∩ (U \ U0). Contradiction. (Compare the arguments with Remark 3.2.)

Obviously, iii) follows from i) and ii).

Corollary 4.10. — The period map P : MΛ → D ⊂ P(Λ ⊗ C) factorizes over

the ‘Hausdorff reduction’ MΛ of MΛ. More precisely, there exist a complex Hausdorff

manifold MΛ and locally biholomorphic maps factorizing the period map:

P : MΛ � MΛ → D,
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such that x = (X,φ), y = (Y, φ′) ∈MΛ map to the same point in MΛ if and only if they

are inseparable points of MΛ, i.e. x ∼ y.

Proof. — Consider the closure R := ∆̄ of the diagonal ∆ ⊂ MΛ ×MΛ. Clearly, R is

the set of all tuples (x, y) with x ∼ y and thus by Proposition 4.9, iii) the graph of an

equivalence relation.

It is known that for an open equivalence relation ∼ on a topological space A the

quotient A/∼ is Hausdorff if and only if its graph R ⊂ A × A is closed (see [6, §8
No3. Prop. 8]). Since ∼ is an open equivalence relation due to Proposition 4.9, iii) and

R = ∆̄, this shows that indeed MΛ/∼ is Hausdorff.

The period map P : MΛ → D is a local homeomorphism and factorizes via

MΛ →MΛ/∼ → D. Hence also MΛ → MΛ/∼ is a local homeomorphism which allows

one to endow MΛ/∼ with the structure of a complex manifold.

So, MΛ := MΛ/∼ (together with the natural maps) has the required properties.

Remark 4.11. — The same arguments apply to any connected component Mo
Λ of MΛ.

Thus by identifying inseparable points, one again obtains a Hausdorff space M
o

Λ. Since

points in distinct connected components of MΛ can always be separated, M
o

Λ is in fact

a connected component of MΛ.

4.4. Twistor deformation and lifts of twistor lines

We briefly recall the construction of the twistor space. For more details, see e.g.

[13, 14].

Any Kähler class α ∈ H1,1(X,R) on a hyperkähler manifold X = (M, I) is uniquely

represented by a Kähler form ω = ωI = g(I( ), ) of a hyperkähler metric g. The

hyperkähler metric g comes with a sphere of complex structures {λ = aI+bJ+cK | a2+

b2 + c2 = 1}, where K = I ◦ J = −J ◦ I. Each (M,λ) is again a complex manifold of

hyperkähler type with a distinguished Kähler form ωλ := g(λ( ), ) and a holomorphic

two-form σλ ∈ H0((M,λ),Ω2
(M,λ)). E.g. for λ = J the latter can be explicitly given

as σJ = ωK + iωI . In general, the forms ωλ, Re(σλ), and Im(σλ) are contained in the

three-dimensional space spanned by ωI , Re(σI), and Im(σI).

The twistor space associated to α is the complex manifold X described by the complex

structure I ∈ End(TmM ⊕ TλP1), (v, w) 7→ (λ(v), IP1(w)) on the differentiable manifold

M × P1. Here, IP1 is the standard complex structure on P1. The integrability of I
follows from the Newlander–Nirenberg theorem, see [15]. In particular, the projection

defines a holomorphic map

X → P1

whose fiber over λ = I is just X = (M, I). If one wants to stress the dependence on

the Kähler class α, one also writes X (α)→ T (α) ∼= P1.

By construction, the twistor space is a family of complex structures on a fixed mani-

fold M . Thus, if we take Λ = H2(M,Z) endowed with the Beauville–Bogomolov pairing,

then the period map yields a holomorphic map P : P1 ∼= T (α)→ D ⊂ P(Λ⊗ C).
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In fact, the period map identifies P1 ∼= T (α) with the twistor line TWα ⊂ D asso-

ciated to the positive three-space Wα := 〈[ωI ], [Re(σI)], [Im(σI)]〉 = Rα ⊕ (H2,0(X) ⊕
H0,2(X))R, i.e.

P : P1 ∼= T (α)
∼→ TWα ⊂ D.

Remark 4.12. — Twistor spaces are central for the theory of K3 surfaces and higher-

dimensional hyperkähler manifolds. In contrast to usual deformation theory, which only

provides deformations of a hyperkähler manifold X over some small disk, twistor spaces

are global deformations.

5. GLOBAL AND LOCAL SURJECTIVITY OF THE PERIOD MAP

5.1. The Kähler cone of a generic hyperkähler manifold

Global and local surjectivity of the period map both rely on the following result

proved in [17].

Theorem 5.1 (Kähler cone). — Let X be a compact hyperkähler manifold with

Pic(X) = 0. Then the Kähler cone KX of X is maximal, i.e. KX = CX .

Here, CX is the positive cone, i.e. the connected component of the open cone

{α ∈ H1,1(X,R) | q(α) > 0} that contains a Kähler class.

Remark 5.2. — For arbitrary compact hyperkähler manifolds the Kähler cone can be

described as the open set of classes in CX that are positive on all rational curves (see

e.g. [13, Prop. 28.5]), but this stronger version will not be needed.

Theorem 5.1 relies on the projectivity criterion for compact hyperkähler manifolds

that shows that X is projective if and only if CX ∩H2(X,Z) 6= 0. The original proof in

[17] was incorrect. The corrected proof given in the Erratum to [17] uses the Demailly–

Păun description [10] of the Kähler cone of an arbitrary compact Kähler manifold (see

also [9]).

Corollary 5.3. — If (X,φ) ∈ MΛ, then Pic(X) = 0 if and only if P(X,φ) 6∈⋃
06=α∈Λ α

⊥. In this case, the Kähler cone of X is maximal, i.e. KX = CX .

Proof. — The first part follows from the observation that φ−1(α) ∈ H2(X,Z) is of type

(1, 1) if and only if it is orthogonal to the holomorphic two-form σX . This in turn is

equivalent to P(X,φ) ∈ α⊥.

Proposition 5.4. — Consider a marked hyperkähler manifold (X,φ) ∈ MΛ and

assume that its period P(X,φ) is contained in a generic twistor line TW ⊂ D. Then
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there exists a unique lift of TW to a curve in MΛ through (X,φ), i.e. there exists a

commutative diagram

MΛ
P // D

TW

?�

i

OO

ĩ

``

with (X,φ) in the image of ĩ.

Proof. — Since P : MΛ → D is locally biholomorphic, the inclusion i : ∆ ⊂ TW ↪→ D

of a small open one-dimensional disk containing 0 = P(X,φ) ∈ ∆ can be lifted to

ĩ : ∆ ↪→ MΛ, t 7→ (Xt, φt) with ĩ(0) = (X,φ). By Corollary 4.10 the space MΛ is

Hausdorff and hence ĩ : ∆ ↪→ MΛ is unique. (The uniqueness is a general fact from

topology which works for any local homeomorphism between Hausdorff spaces, see e.g.

[7, Lem. 1].)

As TW is a generic twistor line, the set TW ∩
⋃

06=α∈Λ α
⊥ is countable and thus for

generic t ∈ ∆ one has Pic(Xt) = 0 (see Remark 3.5 and Corollary 5.3). Let us fix such

a generic t.

By construction, φt(σt) ∈ W ⊗ C and, therefore, there exists a class αt ∈ H2(Xt,R)

such that φt(αt) ∈ W is orthogonal to φt〈Re(σt), Im(σt)〉 ⊂ W . Hence, αt is of type

(1, 1) on Xt and ±αt ∈ CXt , as W is a positive three-space. Due to Corollary 5.3 and

using Pic(Xt) = 0 for our fixed generic t, this implies ±αt ∈ KXt .
Now consider the twistor space X (αt) → T (αt) for Xt endowed with the Kähler

class ±αt. Since φt〈αt,Re(σt), Im(σt)〉 = W , the period map yields an identification

P : T (αt)
∼→ TW .

Both, T (αt) and ĩ(∆), contain the point t and map locally isomorphically to TW .

Again by the uniqueness of lifts for a local homeomorphism between Hausdorff spaces,

this proves 0 ∈ T (αt) which yields the assertion.

5.2. Global surjectivity

The surjectivity of the period map proved in [17] is a direct consequence of the

description of the Kähler cone of a generic hyperkähler manifold.

Theorem 5.5 (Surjectivity of the period map). — Let Mo
Λ be a connected component

of the moduli space MΛ of marked hyperkähler manifolds. Then the restriction of the

period map

P : Mo
Λ � D ⊂ P(Λ⊗ C)

is surjective.

Proof. — Since by Proposition 3.7 any two points x, y ∈ D are strongly equivalent,

it is enough to show that x ∈ P(Mo
Λ) if and only if y ∈ P(Mo

Λ) for any two points

x, y ∈ TW ⊂ D contained in a generic twistor line TW . This is an immediate consequence

of Proposition 5.4 which shows that the generic twistor line TW can be lifted through



1040–19

any given preimage (X,φ) of x. Indeed, then y will also be contained in the image of

the lift of TW .

5.3. Covering spaces

This section contains a criterion that decides when a local homeomorphism is a

covering space. Recall that a continuous map π : A → D between Hausdorff spaces is

a covering space if every point in D admits an open neighbourhood U ⊂ D such that

π−1(U) is the disjoint union
∐
Ui of open subsets Ui ⊂ A such that the projections

yields homeomorphisms π : Ui
∼→ U .

The reader may want to compare Proposition 5.6 below with a classical result of

Browder [7, Thm. 5] which says that a local homeomorphism π : A → D between

topological Hausdorff manifolds is a covering space if every point in D has a neighbour-

hood U such that π is a closed map on each connected component of π−1(U).

Proposition 5.6. — A local homeomorphism π : A → D between topological Haus-

dorff manifolds is a covering space if for any ball B ⊂ B̄ ⊂ D (see 3.8) and any

connected component C of the closed subset π−1(B̄) one has π(C) = B̄.

Proof. — We shall follow the alternative arguments of Markman given in the appendix

to [25]. The techniques are again elementary, but need to be applied with care.

The proof can be immediately reduced to the case that D = Rn and A is connected.

Then π : A → D = Rn is a covering space, i.e. π : A
∼→ Rn, if and only if π admits a

section γ : Rn → A.

Pick a point x ∈ A with π(x) = 0 ∈ Rn (the origin) and consider balls Bε ⊂ B̄ε ⊂ Rn

of radius ε centered in 0 ∈ Rn. By the lifting property of local homeomorphisms (see

e.g. [7, Lem. 1]) any section γ : B̄ε → A is uniquely determined by γ(0).

For small 0 ≤ ε there exists a section of π over the closed ball γ : B̄ε → A with

γ(0) = x (use that π is a local homeomorphism in x). Let I ⊂ R be the set of all 0 ≤ ε

for which such a section exists. Then I is a connected interval in R≥0 containing 0.

It suffices to show that I is open and closed, which would imply I = [0,∞) and thus

prove the existence of a section γ : Rn → A of π.

Claim: I is open. Consider ε ∈ I and the corresponding section γ : B̄ε → A with

γ(0) = x. Then choose for each point t ∈ B̄ε\Bε a small ball Bεt(t) of radius εt centered

in t over which π admits a section γt : Bεt(t) → A with γt(t) = γ(t). Note that then

γ = γt on the intersection B̄ε ∩Bεt(t).

Since B̄ε\Bε is compact, there exist finitely many points t1, . . . , tk ∈ B̄ε\Bε such that

B̄ε \ Bε ⊂
⋃
Bεti

(ti). Moreover, there also exists ε < δ such that B̄δ ⊂ Bε ∪
⋃
Bεti

(ti).

Then, γ and the γti glue to a section γ : B̄δ → A. Indeed, γ and γti coincide on

Bε ∩Bεti
(ti). In order to show that γti and γtj glue over the intersection Bεti

∩Bεtj
(if

not empty), one uses that this (connected) intersection also meets Bε on which γti and

γtj both coincide with γ and hence with each other. (Draw a picture!) Hence δ ∈ I and

thus [0, δ) ⊂ I is an open subset of I containing ε.
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Claim: I is closed. In this step one uses the assumption π(C) = B̄. Consider δ ∈ R≥0

in the closure of I. Then for all ε < δ there is a section γ : B̄ε → A with γ(0) = x.

Therefore, there exists a section over the open ball γ : Bδ → A.

Let C0 be the closure γ(Bδ) ⊂ A and let us show that then π : C0
∼→ π(C0) and that

C0 coincides with the connected component C of π−1(B̄δ) containing x.

To do this, choose balls Bεt(t) as in the previous step for all points t ∈ B̄δ \ Bδ

that are also contained in π(C0). We cannot apply a compactness argument, because a

priori not every t in the boundary of Bδ might be in the image of C0. Nevertheless, the

sections γt and γ glue to a section Bδ ∪
⋃
t∈π(C0) Bεt(t) → A and we denote the image

of this section by V ⊂ A.

Thus, V is an open subset of A homeomorphic to its image under π (which is

Bδ ∪
⋃
t∈π(C0) Bεt(t)). But then C0 = V ∩ π−1(B̄δ) which in particular shows that C0 is

open in π−1(B̄δ). By definition, C0 is also closed and certainly contained in C. Hence

C0 coincides with the connected component C and as C0 ⊂ V ∼= π(V ), also C0
∼= π(C0).

Since by assumption π(C) = B̄δ and, as just proved, C = C0, one finds that a section

over B̄δ exists. This yields δ ∈ I. Hence, I is closed.

5.4. Local surjectivity and proof of Verbitsky’s theorem

In this section we conclude the proof of Verbitsky’s Theorem 1.3. The first step is a

verification of the assumption of Proposition 5.6, which can be seen as a local version

of the surjectivity of the period map (see Theorem 5.5).

Proposition 5.7. — Consider the period map P : M
o

Λ → D from a connected compo-

nent M
o

Λ of MΛ. If B ⊂ B̄ ⊂ D is a ball (see 3.8), then for any connected component

C of P−1(B̄) one has P(C) = B̄.

Proof. — We first adapt the arguments of Theorem 5.5 to show B ⊂ P(C).

Clearly, P(C) contains at least one point of B, because P is a local homeomorphism.

Due to Proposition 3.10, any two points x, y ∈ B are strongly equivalent as points

in B. Thus it suffices to show that x ∈ P(C) if and only if y ∈ P(C) for any two points

x, y ∈ B contained in the same connected component of the intersection TW ∩ B with

TW a generic twistor line. If x = P(X,φ) with (X,φ) ∈ C, choose a local lift of the

inclusion x ∈ ∆ ⊂ TW and then argue literally as in the proof of Theorem 5.5. The

assumption that x, y are contained in the same connected component of TW ∩B ensures

that the twistor deformation T (αt) constructed there connects (X,φ) to a point over y

that is indeed again contained in C.

It remains to prove that also the boundary B̄ \ B is contained in P(C). For this

apply Lemma 3.11 to any point x ∈ B̄ \B and lift the generic twistor line connecting x

with a point in B to a twistor deformation as before.

Then Proposition 5.6 immediately yields:

Corollary 5.8. — If M
o

Λ is a connected component of MΛ, then P : M
o

Λ → D is a

covering space. �
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Since D is simply connected (see Proposition 3.1), this can equivalently be expressed

as

Corollary 5.9. — If M
o

Λ is a connected component of MΛ, then P : M
o

Λ → D is an

isomorphism. �

The proof of Theorem 1.3 can now be completed as follows:

Consider a connected component Mo
Λ of MΛ. Then Mo

Λ gives rise to a connected

component M
o

Λ of MΛ. By Corollary 5.9 the period map P : M
o

Λ
∼→ D is an isomorphism

and in particular all its fibers consist of exactly one point.

Thus it suffices to show that the generic fiber of the natural quotient

π : Mo
Λ →M

o

Λ

consists of just one point (see Remark 1.1 for the meaning of generic). The fibers of π are

the equivalence classes of the equivalence relation ∼ or, equivalently, ≈ (see Corollary

4.10). By Proposition 4.7, points with periods in the complement of D ∩
⋃

06=α∈Λ α
⊥

can be separated from any other point. Thus, the fibers of Mo
Λ → D over all points in

the complement of D ∩
⋃

06=α∈Λ α
⊥ consist of just one point. �

6. FURTHER REMARKS

This concluding section explains some consequences of Verbitsky’s Global Torelli

theorem. Unfortunately, due to time and space restrictions, I cannot enter a discussion

of the polarized case which for an algebraic geometer is of course the most interesting

one. For the latter and in particular for results on the number of components of moduli

spaces of polarized varieties of fixed degree we refer to the relevant sections in [12] and

[21].

6.1. Bimeromorphic Global Torelli theorem

For clarity sake, let us briefly explain again why the generic injectivity of the period

map P : Mo
Λ → D ⊂ P(Λ ⊗ C) implies that points in arbitrary fibres are at least

birational and how this compares to the Weyl group action for K3 surfaces. This was

alluded to in Remark 1.2 and corresponds to Proposition 4.7.

To illustrate this, let us first go back to the case of K3 surfaces. The moduli space

of marked K3 surfaces M consists of two connected components interchanged by the

involution (S, φ) 7→ (S,−φ). In particular, for a generic point x ∈ D, the fibre P−1(x)

consists of exactly two points. Recall that the set of generic points x ∈ D is the

complement of a countable union of hyperplane sections.

The fibre of P : M → D over an arbitrary period point x ∈ D admits a transi-

tive action of the group of all ϕ ∈ O(Λ) fixing x. This group is isomorphic to the

group OHdg(H2(S,Z)) of all Hodge isometries of H2(S,Z) of any marked K3 surface

(S, φ) ∈ P−1(x). The group OHdg(H2(S,Z)) contains the Weyl group WS generated by
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all reflections sδ associated to (−2)-classes δ ∈ Pic(S) ∼= H1,1(S)∩H2(S,Z). Using the

fact that the Kähler cone KS of a K3 surface S is cut out from the positive cone CS
by the hyperplanes δ⊥, one finds that P−1(x) for an arbitrary x ∈ D admits a simply

transitive action of WS × {±1} (see e.g. [1, Exp. VII]). Again, (S, φ) is an arbitrary

point in P−1(x).

In particular, the K3 surfaces S and S ′ underlying two points (S, φ), (S ′, φ′) in the

same fibre of P are abstractly isomorphic. However, the natural correspondence relating

S and S ′ is not the graph Γg of any isomorphism g : S ∼= S ′ but a cycle of the form

Γ := Γg +
∑
Ck×C ′k, where Ck ⊂ S and C ′k ⊂ S ′ are smooth rational curves. Indeed, if

(S, φ), (S ′, φ′) are considered as limits of sequences of generic (Si, φi), resp. (S ′i, φ
′
i), with

P(Si, φi) = P(S ′i, φ
′
i), then the graphs Γgi of the isomorphisms gi : Si

∼→ S ′i deduced

from the generic injectivity of P (up to sign) will in general not specialize to the graph

of an isomorphism but to a cycle of the form Γ.

In higher dimensions the situation is similar. Consider two marked compact hyper-

kähler manifolds (X,φ), (X ′, φ′) which are contained in the same connected component

Mo
Λ. Suppose that their periods coincide P(X,φ) = P(X ′, φ′). If the period is generic

in D, then Theorem 1.3 proves that (X,φ) = (X ′, φ′) as points in Mo
Λ and thus X ∼= X ′.

However, if the period is not generic, then X and X ′ might be non-isomorphic. But

in this case, they can at least be viewed as specializations of two sequences (Xi, φi),

resp. (X ′i, φ
′
i), with generic periods P(Xi, φi) = P(X ′i, φ

′
i) as above. Applying Theorem

1.3 to (Xi, φi), (X
′
i, φ
′
i), shows the existence of isomorphisms gi : Xi

∼→ X ′i inducing

(Xi, φi) = (X ′i, φ
′
i) as points in Mo

Λ.

Again the graphs Γgi of the isomorphisms gi will converge to a cycle Γ ⊂ X×X ′, but

Γ is more difficult to control. In any case, one can show that Γ splits into Γ = Z+
∑
Yk

where X ← Z → X ′ defines a bimeromorphic map and none of the projections Yk → X

and Y ′k → X ′ are dominant (see the proof of Proposition 4.7). This is Theorem 4.3 in [17]

which expresses the fact by saying that non-separated points in MΛ are bimeromorphic.

As a consequence of Theorem 1.3, one can thus state the following

Corollary 6.1. — Let (X,φ), (X ′, φ) be marked hyperkähler manifolds contained in

the same connected component Mo
Λ. If P(X,φ) = P(X ′, φ′), then X and X ′ are

bimeromorphic. �

6.2. Standard Global Torelli

Ideally of course, one would like to have a result that deduces from the existence of

a Hodge isometry H2(X,Z) ∼= H2(X ′,Z) between two compact hyperkähler manifolds

X and X ′ information on the relation between the geometry of the two manifolds.

Unfortunately, Theorem 1.3 fails to produce or to predict such a result. As discussed in

the introduction, the generic injectivity of the period map on each connected component

Mo
Λ ⊂ MΛ, as shown by Verbitsky’s Theorem 1.3, proves ‘one half’ of the standard

Global Torelli theorem. The ‘other half’, the condition O(H2(X,Z))/Mon(X) = {±1}
on the monodromy action on H2(X,Z), does not hold in general. Recall that Mon(X) is
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the subgroup of O(H2(X,Z)) generated by the image of all monodromy representations

π1(B, t)→ O(H2(X,Z)) induced by smooth proper holomorphic families X → B with

Xt = X. Here, the base B can be arbitrarily singular.

Thus, in full generality Theorem 1.3 only yields the following weak form of the stan-

dard Global Torelli theorem in which the condition on the monodromy action is not

always satisfied and in any case hard to verify.

Corollary 6.2. — Two compact hyperkähler manifolds X and X ′ are bimeromorphic

if and only if there exists a Hodge isometry H2(X,Z) ∼= H2(X ′,Z) that can be written

as a composition of maps induced by isomorphisms and parallel transport along paths

of complex structures. �

Corollary 6.3. — In particular, if O(H2(X,Z))/Mon(X) = {±1}, then the bimero-

morphic type of X (and for generic X even the isomorphism type) is determined by its

period among compact hyperkähler manifolds that are deformation equivalent to X. �

The monodromy group Mon(X) has been computed by Markman for X = Hilbn(S)

and arbitrary n (see [19, 20]). In particular, his results tell us exactly when the mono-

dromy condition, and thus the standard Global Torelli theorem for deformations of

Hilbn(S), do hold.

Theorem 6.4 (Markman). — Let X be deformation equivalent to the Hilbert scheme

Hilbn(S) of a K3 surface S. Then O(H2(X,Z))/Mon(X) = {±1} if and only if

n = pk + 1 for some prime number p or n = 1. �

Corollary 6.5. — Suppose X and X ′ are deformation equivalent to the Hilbert

scheme Hilbn(S) of a K3 surface S such that n = pk + 1 for some prime number p.

Then there exists a Hodge isometry H2(X,Z) ∼= H2(X ′,Z) if and only if X and X ′ are

bimeromorphic. �

Remark 6.6. — Note that for all other values of n the standard Global Torelli theorem

fails, i.e. there exist Hodge isometric deformations of Hilbn(S) that are not bimeromor-

phic. A conjectural explicit description for the monodromy group of the generalized

Kummer varieties Kn(S) can be found in [21].

Remark 6.7. — Clearly, Mon(X) is contained in the image of Diff(X)→ O(H2(X,Z)).

However, it is not known whether the two groups always coincide. For a K3 surface S

the computation of the monodromy group Mon(S) is not too difficult. It coincides with

the index two subgroup O+(H2(S,Z)) ⊂ O(H2(S,Z)) of all orthogonal transformations

preserving the orientation of a positive three-space. That in this case Mon(S) indeed

coincides with the action of the full diffeomorphism group Diff(S), which is equivalent to

the assertion that −id is not induced by any diffeomorphism, is a theorem of Donaldson.
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6.3. Global Torelli theorem for K3 surface revisited

As it turns out, Verbitsky’s result provides a new approach towards the Global Torelli

theorem for K3 surfaces. Apparently, the potential usefulness of twistor spaces not only

for the surjectivity of the period map but also for its injectivity was discussed among

specialists thirty years ago but details have never been worked out.

We shall briefly explain the situation of K3 surfaces and what precisely is used to

prove Theorem 1.3.

i) The existence of hyperkähler metrics in each Kähler class. This is a highly non-

trivial statement and uses Yau’s solution of the Calabi conjecture. The existence is

crucial for Verbitsky’s approach as it ensures the existence of twistor spaces upon which

everything else hinges. The theory as represented in [1], which in turn relies on work

of Looijenga and Peters and many others, also uses Yau’s result, but the original proof

for algebraic or Kähler K3 surfaces due to Pjateckĭı-Šapiro, Šafarevič, resp. Burns,

Rapoport of course did not.

ii) The description of the Kähler cone. More precisely, the proof uses the fact that

a K3 surface S with trivial Picard group has maximal Kähler cone, i.e. KS = CS (cf.

Theorem 5.1). The description of KS for an arbitrary K3 surface S is much more

precise as the statement in higher dimensions (see Remark 5.2): KS is cut out of CS
by hyperplanes orthogonal to smooth (!) rational curves. (Note that in [1] one first

proves the surjectivity of the period map which is then used to prove this more precise

version.)

So far, the general line of arguments were simply applied to the two-dimensional

case. It would be interesting to see whether the proofs of i) and ii) can be simplified for

K3 surfaces in an essential way. In any case, the arguments to prove Theorem 1.3 (in

arbitrary dimensions) yield that for any connected component Mo of the moduli space

of marked K3 surfaces M the period map P : Mo → D ⊂ P(Λ ⊗ C) is surjective and

generically injective. Moreover, if (S, φ), (S ′, φ′) ∈ Mo are contained in the same fibre

of P , then S and S ′ are isomorphic.

In order to prove the Global Torelli theorem for K3 surfaces in its original form, one

last step is needed (see Corollary 6.3 and page 3). (One also needs Kodaira’s result

that any two K3 surfaces are deformation equivalent. For a rather easy proof, see e.g.

[1, Exp. VI].)

iii) For a K3 surface S one has O(H2(S,Z))/Mon(S) = {±1}. Of course, this can be

deduced a posteriori from the Global Torelli theorem for K3 surfaces. But in fact much

easier, more direct arguments exist using classical results on the orthogonal group of

unimodular lattices like 2(−E8)⊕ 2U due to Wall, Ebeling, and Kneser.

To conclude, the Global Torelli theorem for K3 surfaces could have been proved

along the lines presented here some thirty years ago. The key step, the properness of

the period map MΛ → D, relies on techniques that are very similar to those used for

the surjectivity of the period map by Todorov, Looijenga, and Siu.
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The main difference of this approach towards the Global Torelli theorem compared

to the classical one is that one does not need to first prove the result for a distinguished

class of K3 surfaces, like Kummer surfaces, and then use the density of those to extend

it to arbitrary K3 surfaces. Since in higher dimensions no dense distinguished class of

hyperkähler manifolds that could play the role of Kummer surfaces is known, this new

approach seems the only feasible one.
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[1] A. Beauville et al. – Géométrie des surfaces K3 : modules et périodes, Papers from

the seminar held in Palaiseau, Astérisque 126 (1985), 1–193.
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