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ULTRAMETRICITY IN MEAN-FIELD SPIN GLASSES

[after Dmitry Panchenko]

by Erwin BOLTHAUSEN

1. MEAN-FIELD SPIN GLASSES

Spin glasses are Gibbs measures with random interactions. The most natural one

is probably the Edwards-Anderson model, which is an Ising type model with nearest

neighbor random interactions. On a finite box VN
def
= {1, . . . , N}d with outer boundary

∂VN (consisting in the points in Zd\VN which have a neighbor in VN) one defines the

Hamiltonian with boundary condition η ∈ {−1, 1}∂VN by

−HVN (σ|η)
def
=

∑
i,j∈VN , i∼j

Jijσiσj +
∑

i∈VN ,j∈∂VN ,i∼j

Jijσiηj,

for σ ∈ {−1, 1}VN , where i ∼ j means that the points are neighbors on the lattice. One

always takes Jij = Jji, so that the sum is over the undirected bonds of the graph VN .

In the Ising model, one would have Jij = J = const > 0. The Hamiltonian defines

a Gibbs measure on ΣVN
def
= {−1, 1}VN with boundary condition η, and with inverse

temperature parameter β > 0, by

µVN ,η (σ)
def
=

1

ZN,η,β
exp [−βHVN (σ|η)] .

The normalizing constant ZN,η,β, the so-called partition function (as it is a function

of β) is

ZN,η,β
def
=

∑
σ∈ΣVN

exp [−βHVN (σ|η)] .

A natural question is about the possible limits with N → ∞ and a sequence {ηN}
of boundary conditions. In particular, one is interested to know whether the set of

measures on {−1, 1}Z
d

which can be obtained as limits contains a unique element, and

if not how many extreme points in this set are. (The set is convex.)

For the Ising model, this is a well studied question, still with many open questions

particularly for d ≥ 3. The Edwards-Anderson model takes the Jij as i.i.d. random

variables, for instance centered Gaussian ones, or ±1 coin tossings. The Hamiltonian

itself is then a random variable, and the Gibbs measure is a random measure: If the J ’s
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are defined on a probability space (Ω,F ,P), then the partition function is a function of

ω ∈ Ω: ZN,η,β,ω, and the Gibbs measure also depends on the realizations ω. Typically,

one is interested in so-called quenched properties, i.e. properties which hold for al-

most all ω (under P). Unfortunately, for the Edwards-Anderson model, the most basic

questions are mathematically completely open.

Mean-field models offer a possibility to investigate some of the basic questions, like

the existence of phase transitions, in a mathematically much simpler way than for short

range models like the Ising model. In mean-field models, the interactions are not local

or short range, but a spin variable σi interacts with the others in a more global way,

for instance through their means. However, the notion of an infinite Gibbs measure

typically makes no longer sense, but one can still define the limiting free energy, mean

magnetization, critical exponents, etc. Of course, in many respects, mean-field models

are too simple to give even qualitatively the same answers as in short range models, for

instance about critical exponents.

Given the mathematical difficulty in understanding short range spin glasses, it is

natural to investigate mean-field type spin glasses, in the hope that they are tractable.

This was the motivation of Sherrington and Kirkpatrick [23] to propose their now

famous model. In the end, it turned out that a mathematically rigorous understanding

is possible, in contrast to the present situation for short range models, but it took a

long way, and the results are still far from covering all aspects. Here is the SK-model:

One starts with a countable number of standard Gaussian random variables, defined

on a probability space (Ω,F ,P), indexed as a matrix (gij)1≤i<j. If we specify the

dependence on ω, we write gij (ω). Of course, one can take Ω = RN, but probabilists

usually don’t like to fix that. Then for any N ∈ N, one defines the random Hamiltonian

(1) HN,ω (σ)
def
= − 1√

N

∑
1≤i<j≤N

gij (ω)σiσj,

where σ = (σ1, . . . , σN) ∈ ΣN
def
= {−1, 1}N . The minus sign is of course of no relevance,

and is put only to please the physicists. A slight generalization is to allow the presence

of an external field in the form

(2) HN,ω (σ)
def
= − 1√

N

∑
1≤i<j≤N

gij (ω)σiσj − h
N∑
i=1

σi,

with h ∈ R a parameter. The external field adds some non-trivial complications. We

will however stick to the Hamiltonian (1). As in the usual mean-field models, there is

no geometric structure of the index set {1, . . . , N}.
From standard mean-field models one would expect a factor 1

N
instead of 1√

N
. How-

ever, a moment’s reflection shows that the square root is the appropriate scaling: The

main issue is that, given a site i, the influence of the other sites on σi is of order 1. To

achieve this in the random situation, one has to have the factor 1√
N

in front.
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One then defines in the usual way the partition function which now depends on the

Gaussian variables gij, i.e. on ω:

(3) ZN,β,ω
def
=
∑
σ

exp [−βHN,ω (σ)] ,

and the random Gibbs measure

(4) GN,β,ω (σ)
def
=

1

ZN,β,ω
exp [−βHN,ω (σ)] .

There are two sources of probability, namely for fixed ω the probability measure GN,β,ω

on ΣN , and then the randomness of this law itself, as it depends in a non-trivial way

on ω. One usually calls this a random probability distribution.

Remark 1. — For the sake of simplicity, we restrict the discussion here completely to

the original SK-model. Everything works for so-called p-spin models and mixtures of

p-spin models. The p-spin models have the Hamiltonian

H
(p)
N (σ)

def
=

1

N (p−1)/2

∑
1≤i1<i2<···<ip≤N

gi1,i2,...,ipσi1σi2 · · ·σip ,

where the g’s as before are i.i.d. standard Gaussians.

We can now formulate the ultrametricity conjecture, although its importance will

stay quite mysterious for the moment (and maybe still till the end of these notes).

A metric d on a space S is called an ultrametric, if it satisfies the stronger triangle

inequality:

d (x, y) ≤ max (d (x, z) , d (y, z)) , ∀x, y, z ∈ S.
This is essentially equivalent with the metric space having a tree structure, S being the

set of leaves, and d being the (weighted) graph distance. ΣN is a metric space under

the Hamming distance, counting the number of sites on which two elements differ. This

is evidently not an ultrametric. However, the ultrametricity conjecture states that it is

approximately so under the above Gibbs measure, as N →∞.

The Hamming distance is not quite appropriate due to the inherent symmetry of

the Gibbs measure under the reflection σ → −σ. A better distance is the L2-distance

between HN (σ) and HN (σ′) . It can be expressed through the overlaps

(5) RN (σ, σ′)
def
=

1

N

N∑
i=1

σiσ
′
i,

which will play a very important rôle. The importance is coming from the fact that the

covariances of the Hamiltonians are given in terms of the overlaps

(6) EHN (σ)HN (σ′) =
N

2
RN (σ, σ′)

2 − 1

2
.

Then

‖HN (σ)−HN (σ′)‖2
L2 = N

(
1−R2

N (σ, σ′)
)
,
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and by norming with
√
N we take as the distance between σ, σ′:

d (σ, σ′)
def
=
√

1−R2
N (σ, σ′).

Evidently, it is not quite a metric as d (σ,−σ) = 0.

Let’s now consider a triple (σ, σ′, σ′′) ∈ Σ3
N . For fixed ω we may consider the product

measure G⊗3
N,β,ω on Σ3

N which means that we choose the three elements σ, σ′, σ′′ inde-

pendently. Such independent copies are called “replicas” in the literature. However,

one has to remember that this independence is for fixed ω (which in physics jargon is

the so-called “quenched” measure). σ, σ′, σ′′ are far from independent, if one considers

the joint law. The ultrametricity conjecture states

Conjecture 2. — Given any ε > 0, one has for any β ≥ 0 (and h ∈ R in case of the

presence of an external field)

(7) lim
N→∞

EG⊗3
N,β,·

(
d (σ, σ′)

N
≥ max

(
d (σ, σ′′)

N
,
d (σ′, σ′′)

N

)
+ ε

)
= 0.

Expressed in terms of the overlaps, the statement reads that for all ε > 0

(8) lim
N→∞

EG⊗3
N,β,·

(
|RN (σ, σ′)|

N
≤ min

(
|RN (σ, σ′′)|

N
,
|RN (σ′, σ′′)|

N

)
− ε
)

= 0.

In the above form, this is an unproved statement. The results which has been proved

is somewhat weaker, and will be discussed in more details later.

The relevance of ultrametricity is not immediately evident. In physics literature, the

ultrametricity however played a crucial rôle in the non-rigorous derivations for instance

of the Parisi formula for the free energy.

There is a rather puzzling point connected with the overlaps. The SK-Gibbs weights

are completely symmetric under the transformation σ → −σ. Therefore, the distribu-

tion of RN (σ, σ′) under G⊗2
N,β,ω is symmetric on R. Later, we will however work with

Gibbs measures under slightly perturbed Hamiltonian, for which for large N , Tala-

grand’s positivity property holds: RN ≥ 0 with large probability (≈ 1 in the N → ∞
limit).

There is one aspect one has to be aware of, to see that the statement of Conjecture 2 is

highly non-trivial. Take first the trivial case where β = 0, so that the σi are just coming

from independent coin tossing (biased if h 6= 0). Then by the law of large numbers,

R (σ, σ′) is for large N close to a fixed constant (0 if h = 0) and therefore also d (σ, σ′)

is close to a constant. Then of course, (7) is trivially true. However, in the SK-case, the

overlaps R (σ, σ′) stay random also in the N → ∞ limit, under independent replicas,

provided β is large enough, i.e. in the so-called spin glass phase. If they stay random,

then there is a priori no reason why (7) should hold.

A basic quantity of interest is the so-called free energy:

f (β)
def
= lim

N→∞

1

N
logZN,β.
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In the case of the presence of an external field, one would have f (β, h). The existence

is far from evident, and in principle, the limit, if it exists, could be a random variable.

However, it is not too difficult to prove the self-averaging of the free energy, meaning

that 1
N

logZN,β is for large N close to its E-expectation. This follows from standard

Gaussian isoperimetry inequalities, see e.g. [17]. Therefore, the question is if

lim
N→∞

1

N
E logZN,β

exists. For small β, this question had first been addressed in two papers [2], [13] where

it is proved among other things, that for β small one has

(9) f (β) = lim
N→∞

1

N
E logZN,β =

β2

4
+ log 2

which is limN→∞N
−1 logEZN,β. This value cannot be correct for large β, as it would

imply that the entropy is negative, as has already been observed by Sherrington and

Kirkpatrick. Therefore, the result already proves that there is a phase transition in the

system. The existence of the limit for all β was first proved by Guerra and Toninelli

[16] by a simple but very clever argument.

In the original paper by Sherrington and Kirkpatrick [23], (9) was predicted based on

non-rigorous replica computation. This computation, and an ansatz which has become

known under the name “replica symmetry” predicted the following formula for the free

energy

(10) fRS (β) = infq∈[0,1]

{
β2 (1− q)

4
+

∫
log cosh (β

√
qz)

1√
2π

e−z
2/2dz

}
+ log 2.

It is easy to see that fRS (β) = β2/4 + log 2 for β ≤ 1 with a phase transition at β = 1

after which fRS (β) < β2/4 + log 2. However, it was already noted by Sherrington and

Kirkpatrick that for large β, one has f (β) 6= fRS (β) , as equality would imply that the

entropy of the system is negative. In fact, one now knows that

f (β) < fRS (β) < β2/4

for large β. The correct f (β) is given by a much more complicated variational formula,

the famous Parisi formula, see [21], first rigorously proved in two papers by Guerra [15]

and Talagrand [24], and recently, in a way connecting it directly to the ultrametricity

problem by Panchenko [20]. We will give the Parisi formula later (30), (31). For more

background of the physics theory, see [18].

We finish this short introduction by describing a much simpler model, the so-called

random energy model, REM for short. Although not directly relevant for the

SK-model, it has played a considerable rôle for the understanding of the latter.

The SK-model is completely described through the field {HN (σ)}σ∈ΣN
of random

variables. As the gij are i.i.d. standard Gaussians, the field is a centered Gaussian

field (in the h = 0 case), and so it is described by its covariances given above in (6).

Given the difficulty of the SK-model, Derrida [10] investigated the situation where the

Hamiltonian consists of i.i.d. Gaussians (centered). In order to catch some of the
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features of the SK-model, one should take them with variances of order N , and then

one can as well take them equal to N : {HN (σ)}σ∈ΣN
is a field of independent centered

Gaussians with variance N . The structure of ΣN as a discrete hypercube is no longer

of relevance. This model is easy to analyze, but it is interesting that it has a phase

transition.

f (β)
def
= lim

N→∞

1

N
logZN (β) = lim

N→∞

1

N
log
∑
σ

e−βHN (σ)

= lim
N→∞

1

N
E logZN (β)

is given by

f (β) =

{
log 2 + β2

2
for β ≤

√
2 log 2√

2 log 2β for β ≥
√

2 log 2
.

Therefore, there is a critical point βcr
def
=
√

1 log 2 at which f has no continuous second

derivative. (The first derivative is still continuous.) The proof of this formula is easy.

For t > 0

P (HN (σ) ≥ tN) ≈ exp

[
−t

2N

2

]
,

up to a irrelevant polynomial factor (in N). Therefore, by the law of large numbers,

one has for t <
√

2 log 2

# {σ : HN (σ) ≥ tN} ≈ exp

[(
log 2− t2

2

)
N

]
with probability ≈ 1, and for t >

√
2 log 2, # {σ : HN (σ) ≥ tN} = ∅, with large

probability. From that one easily gets∑
σ

exp [βHN (σ)] ≈ exp

[
N log 2 +N supt≤

√
2 log 2

(
βt− t2

2

)]
= exp [Nf (β)] ,

with f (β) as given above. The approximations are up to subexponential factors which

are negligible in the limit.

Although the REM is too simple to shed much light on the behavior of more com-

plicated spin glasses, there are some aspects which are similar, as we will explain later.

The REM, and a generalization of it, the so-called generalized random energy model

GREM introduced in [11], have played a very important rôle in the recent mathematical

development of mean-field spin-glass theory.

2. INFINITE OVERLAP STRUCTURES

For mean-field models, there is usually no concept of an infinite Gibbs measure, and

therefore, strictly speaking, also no mathematically sound definition of “pure states”.
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The fact that in [18] and other texts in the physics literature, the notion of “pure states”

plays an important rôle, has led to misunderstandings and controversies. However,

for SK-type models, there is a way out, surprising at first, which was developed by

a number of authors, Aizenman, Arguin, Ghirlanda, Guerra, and others, and finally

most successfully by Panchenko. The basic observation is that essential all relevant

information is encoded in the law of the overlaps of replicas under the P-average of the

infinite product of the Gibbs measure. To be precise: Consider an arbitrary random

probability measure GN,ω on ΣN = {−1, 1}N , where we assume, in future without

specially mentioning, that the map ω → GN,ω (σ) is measurable for any σ ∈ ΣN . The

infinite product G⊗NN,ω is a probability measure on Σ⊗NN , depending still (measurably)

on ω. Then we define the averaged measure by

AV (dσ)
def
=

∫
G⊗NN,ω (dσ)P (dω)

on Σ⊗NN , the latter equipped with the infinite product σ-field.

Next, we consider overlaps from “replicas”: Given
{
σ`
}
`∈N ∈ Σ⊗NN , σ` =

(
σ`1, . . . , σ

`
N

)
,

we define the infinite matrix RN of overlaps with components

RN
`,`′

def
=

1

N

N∑
i=1

σ`iσ
`′

i .

The matrix elements are in [−1, 1], and the diagonal elements are 1. Evidently, the

matrix is symmetric and positive semidefinite. We write νN for the distribution of RN

under AV. The set M of infinite, symmetric, positive semi-definite matrices with entries

∈ [−1, 1] is clearly a compact space under the topology of componentwise convergence.

The set of probability measures P (M) on this space is therefore a compact space, too,

under weak convergence. The sequence {νN} has therefore convergent subsequences,

and one can consider the set of possible limits of subsequences, as N →∞.

This concept is very ingenious: In classical (short range) systems, one would try to

consider limits limN→∞GN . This does not make sense for mean field models, as the

interactions between different sides vanish in the N → ∞ limit. The above concept

of limits limN→∞ νN , maybe along subsequences, makes however perfectly sense, and

there is a beautiful structure theorem for the possible limits. It turns out that all

possible limits are generated in an abstract way similarly as the finite N laws. The

limits can in fact be described through a randomization, as will be explained now. This

randomization acts as a kind of an “infinite Gibbs measure”, but it is not constructed

from the original Gibbs measure, but only through the distribution of the overlaps, and

an abstract representation theorem.

The distribution νN has an important symmetry property: If τ : N→ N is a permu-

tation of finitely many elements, let τ̂ : M → M be the mapping which exchanges the

indices of the matrices accordingly. Evidently νN τ̂
−1 = νN where νN τ̂

−1 denotes the

induced measure under the mapping τ̂ . Let P inv (M) be the set of probability measures

on M which have this invariance property. P inv (M) is a closed subset of P (M). We
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formulate now the key abstract representation property for elements of P inv (M) . For

that, let H be one of the standard (real) infinite dimensional separable Hilbert spaces

with Borel-σ-field H.

Theorem 3 (Dovbysh-Sudakov). — Any ν ∈ P inv (M) can be represented in the fol-

lowing way. There exist a probability space (Ω,F ,P) and a Markov kernel G from

(Ω,F) to (H × R+,H⊗ BR+) such that ν is the law of (H × R+)
N 3 ((h`, a`))`∈N →

(〈h`, h`′〉 (1− δ`,`′) + a`δ`,`′)`,`′ ∈M under
∫
P (dω)G⊗N (ω, ·). (〈·, ·〉 is the inner product

in H.)

A short explanation about the formalities: A Markov kernel from a measurable space

(Ω,F) to a second one (Ω′,F ′) is a mapping G : Ω × F ′ → [0, 1] such that for any ω,

the mapping A → G (ω,A) is a probability measure on F ′, and for any A ∈ F ′, the

mapping ω → G (ω,A) is measurable. For fixed ω, G⊗N (ω, ·) denotes the infinite

product measure on
(
Ω′N,F ′⊗N

)
, and

∫
P (dω)G⊗N (ω, ·) is simply the averaged one.

Essentially, the Dovbysh-Sudakov theorem says that any measure in P inv (M) is the

law of the matrix of inner products under the averaged infinite product of a random

probability on H. There is a slight modification on the diagonal, as this applies only

to the off-diagonal part of the random matrix, and the diagonal elements are produced

by a separate random mechanism, as described above.

For the case of the overlap distribution νN , the representation is already given by the

Gibbs distribution, as we can regard ΣN as a subset of a Hilbert space. The theorem

therefore constructs a kind of a substitute for the limit of the Gibbs measures.

In the application of the theorem to the SK-model it will turn out that any possible

limit ν of νN will have an additional property, namely that it satisfies the Ghirlanda-

Guerra identities. This will imply that G will have a very special structure. This

structure is the content of the next section.

3. RUELLE’S PROBABILITY CASCADES

3.1. The Poisson-Dirichlet point process

Let λ ∈ (0, 1) be a parameter. We consider a point process on the positive real line

R+ = (0,∞) with intensity measure µλ (dx) = λx−1−λdx. A Poisson point process is

a random point configuration on the base space, here R+. Intuitively, an infinitesimal

interval [x, x+ dx] contains a point with probability λx−1−λdx, and no point with prob-

ability 1−λx−1−λdx, and the events in different infinitesimal intervals are independent.

From this it follows that in every finite interval I, the number of points in this interval

is Poisson distributed with parameter
∫
I
λx−1−λdx. We write PPP (µ) for a Poisson

point process with intensity measure µ. As µλ ([a,∞)) < ∞, a > 0, there are only

finitely many points in the interval [a,∞). On the other hand, as µλ (R+) =∞, there

are almost surely infinitely many points on R+. As our point process has a largest
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point, we can order the random points downwards leading to a decreasing sequence of

real-valued random variables ξ1 > ξ2 > · · · > 0 which represent the random points of

the point process. From the fact that
∫ 1

0
xµλ (dx) < ∞, it follows that

∑
i ξi1ξi≤1 has

finite expectation and is therefore finite. So, it follows that
∑

i ξi < ∞ almost surely

as the number of points above 1 is finite. We put ξ̄i
def
= ξi/

∑
j ξj, leading to a point

process in (0, 1) whose points sum up to 1, i.e. to a random probability distribution on

the integers, with decreasing weights. This point process is usually called the Poisson-

Dirichlet point process with parameter λ. We denote it by PD (λ). It is easy to see

that a PD (λ) is not a Poisson point process. We have fixed the ξi to be decreasing,

and therefore the ξ̄i, too.

We will write expectations under
{
ξ̄i
}

by 〈·〉, whereas the probability measure which

governs the point process is denoted by P, and expectations by E. The point processes

have a number of crucial invariance properties. For instance, it is not difficult to prove

the following result, which follows from the special form of the intensity measure of the

original Poisson point process.

Proposition 4. — Assume {ξi} is a PPP
(
λx−λ−1dx

)
with λ ∈ (0, 1), and assume

that {Xi} are i.i.d. positive random variables, independent also of the point process,

satisfying E
(
Xλ
i

)
< ∞. Then

{
ξiXi/

∑
j ξjXj

}
is a Poisson-Dirichlet point process

with parameter λ.

If the ξi are ordered downwards, then of course the ξiXi are no longer ordered.

Ordering the new points therefore defines a random permutation of the natural numbers.

For the setting described above, there is a very simple notion of overlaps. If we fix the

point process ξ̄ =
{
ξ̄i
}

, ordered downwards, which as remarked above, is a (random)

probability distribution on N, we consider independent copies σ1, σ2, . . . of N-valued

random variables, distributed according to ξ̄. This amounts just to consider the infinite

product measure ξ̄⊗N on NN. The σi are called “replicas”. Given these replicas, we

define their overlaps in a rather trivial way:

(11) Rij
def
=

{
1 if σi = σj

0 if σi 6= σj.

Evidently (Rij) is a random element inM. The Rij satisfy simple restrictions. In fact,

one just divides N according to the equivalence relation i ∼ j ⇐⇒ σi = σj, which

defines a partition of N, and then the overlap matrix is one inside the same class. Let’s

consider this partition restricted to {1, . . . , N} , N ∈ N. For a given partition of this

set into k disjoint subset A1, . . . , Ak with ni = |Ai| ,
∑k

i=1 ni = N , the ξ̄⊗N -probability

for this partition, or the corresponding overlap matrix, is given by∑∗

i1,...,ik

ξ̄n1
i1
ξ̄n2
i2
· · · · · ξ̄nkik ,
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where
∑∗ means that the summation indices are all different. By applying fairly stan-

dard tools from point process theory, one can easily evaluate

Φ (n1, . . . , nk)
def
= E

∑∗

i1,...,ik

ξ̄n1
i1
ξ̄n2
i2
· · · · · ξ̄nkik .

Proposition 5. — Let n1, . . . , nk ∈ N, and N
def
=
∑k

i=1 ni. If
{
ξ̄i
}

is a PD (λ) then

(12) Φ (n1, . . . , nk) =
(k − 1)!

(N − 1)!
λk−1

k∏
i=1

g (ni, λ)

where

g (n, λ)
def
= (n− 1− λ) (k − 2− λ) · · · (1− λ)

if n ≥ 2, and g (1, λ)
def
= 1.

We again define AVλ to be the measure AVλ
def
=
∫
ξ̄⊗NdP on NN. The above functions Φ

define the distribution of the overlap matrix under this measure uniquely. A special

case is k = 1, n1 = 2 which gives

(13) AVλ (R1,2 = 1) = E
∑
i

ξ̄2
i = 1− λ.

The proposition has as a corollary the Ghirlanda-Guerra identities as we will

now prove.

The identities express the conditional distribution of R1,n+1 under AVλ conditioned

on R(n) def
= (Rij)i,j≤n. As remarked above, R(n) is the same as the partition of {1, . . . , n}

through the equivalence relation given by equality of the replicas. {R1,n+1 = 1} is

the event that the “newcomer” σ(n+1) belongs to the same class (via equality) as the

first one. We compute the conditional probability of this event given the partition of

{1, . . . , n}. Let n1 be the number of elements in the class of σ1 among the first n, or to

put it simpler, 1 plus the number of replicas among σ2, . . . , σn which are equal to σ1,

and let n2, . . . , nk be the other numbers. (They will cancel out in the computation.)

Then

AVλ

(
R1,n+1 = 1|R(n)

)
=

Φ (n1 + 1, . . . , nk)

Φ (n1, . . . , nk)

=
g (n1 + 1, λ)

ng (n1, λ)
=
n1 − λ
n

(14)

=
n1 − 1

n
+

1− λ
n

=
n1 − 1

n
+

1

n
AVλ (R1,2 = 1) .

This can be interpreted that conditionally on R(n), R1,n+1 picks with probability 1−1/n

one of the places j ∈ {2, . . . , n} and then R1,j, and with probability 1/n, it chooses

R1,n+1 independently with the distribution of R1,2, i.e.

(15) LAVλ

(
R1,n+1|R(n)

)
=

1

n

n∑
j=2

δR1,j
+

1

n
LAVλ (R1,2)
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(15) is called the Ghirlanda-Guerra identity for the Poisson-Dirichlet distribution.

(13) and (14) determine the probability distribution of (Rij) under AVλ uniquely.

The proof can be found in [20]: One derives (12) recursively from the two identities.

It’s not difficult to place the above simple setting into the framework of Section 2:

One chooses in the Hilbert space H an orthonormal sequence {hi} and identifies it with

i ∈ N.
{
ξ̄i
}

defines a random probability measure on H by giving hi weight ξ̄i. This

plays the rôle of G of the last section. We therefore have a (rather trivial) example

of a structure as described in the last section, with the additional property that the

Ghirlanda-Guerra identities are satisfied. This is too simple for our purpose, and we

generalize it in the next subsection.

It may be instructive to see in which way this point process appears as a limit of the

REM, i.e. when the HN (σ) are independent Gaussians with variance N, 1 ≤ σ ≤ 2N .

It is a standard and simple fact from extreme value theory that for some sequence of

real numbers aN →∞, the point process∑
σ

δ−HN (σ)−aN →w PPP (µ)

with µ (dx) =
√

2 log 2 exp
[
−
√

2 log 2x
]
dx. →w here means convergence in distribu-

tion, i.e. convergence of the laws. The random point measure on the left hand side

is a random element in the space of Radon measures on R equipped with the vague

topology. This means that as aN →∞, the bulk of the mass of the measure disappears

to −∞. The sequence {aN} can easily be given explicitly, but it is of no importance

for us.

It is then an equally standard fact from point process theory, that∑
σ

δexp[−βHN (σ)−βaN ] →w PPP (µ′)

where µ′ is the measure on R+ given by µ′ (dx) = λx−λ−1dx, with λ =
√

2 log 2/β.

Remark now that the Gibbs measure of the REM, which is obtained by normalizing

the exp [−βHN (σ)] can as well be obtained by normalizing exp [−βHN (σ)− βaN ] .

From that, it is plausible, that if β >
√

2 log 2, i.e. λ < 1, one has

(16)
∑
σ

δGN,β(σ) →w PD (λ) .

There is a slight problem to justify that, since the normalization operation is not con-

tinuous, but it can easily be done.

In a sense, the program is now to achieve something like that for the SK-model,

with the outcome being the more complicated objects of the next section. However, the

reader is warned that a statement like (16) is for the SK-model presently totally beyond

reach, and can in fact not be correct in this strong form. For much simpler models,

like branching random walks, Gaussian free fields, and other so-called log-correlated

models, such results have been obtained recently, or are under intensive research, see
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for instance [5], [1], [9] and others, but presently, nobody dares to touch the SK-model

from this viewpoint.

3.2. The cascades

We move to a more complicated model which gives a more complicated notion of

overlaps, and which satisfies the same Ghirlanda-Guerra property as was described in

the last section, but with the crucial difference, that overlaps are now not just 0-1-

valued.

The model was invented by David Ruelle [22] who gave a reinterpretation of Derrida’s

generalized random energy model. Ruelle’s probability cascades are indeed the limits

of Derrida’s GREMs, a fact which Ruelle evidently considered to be evident, but which

was mathematically proved only later by Bovier and Kurkova [8]. This point is however

irrelevant for the discussion here, and we just describe the Ruelle version of the GREM.

Let K ∈ N be fixed. This counts the number of levels the cascades has.

The cascades are defined by piling several of the point processes, with increasing

parameters. Fix K ∈ N and parameters 0 < λ1 < λ2 < · · · < λK < 1. Choose first a

PPP
(
λ1t
−λ1−1dt

)
described by

{
ξ

(1)
i1

}
i1∈N

, where it is assumed that the variables are

ordered downwards. Then for any i1 choose independently PPP
(
λ2t
−λ2−1dt

)
’s, i.e. the

countable number of point processes
{
ξ

(2)
i1,i2

}
i2∈N

. Then for any pair (i1, i2) one chooses

independently PPP
(
λ2t
−λ2−1dt

)
’s
{
ξ

(3)
i1,i2,i3

}
i3∈N

etc., up to level K. We can multiply

all these variables, obtaining

Xi
def
= ξ

(1)
i1
ξ

(2)
i1,i2
· · · · · ξ(K)

i1,i2,...,,iK
, i = (i1, . . . , iK) .

It is not difficult to see that
∑

iXi <∞, and therefore, we can again normalize

(17) X̄i
def
=

Xi∑
iXi

.

If we order these random points in (0, 1) downwards, one obtains a random probability

distribution on N. This involves a random bijection ψ : N → NK , giving πi
def
= X̄ψ(i)

with π1 > π2 > · · · . A quite astonishing observation which is not difficult to prove,

and which is a consequence of invariance properties like the one stated in Proposition 4,

is that, as a point process, {πi} is simply a PD (λK). Therefore, nothing new seems

to have come up by this complicated construction. However, there is now inherently

a non-trivial overlap structure of the points. We define τ : N× N→{0, . . . , K} by

setting τ (i, j) = k if the first k components of ψ (i) agree with the ones of ψ (j) but

not the next. Evidently, τ (i, j) = K holds only if i = j. The relation τ (i, j) ≥ k

defines a random equivalence relation on N, i.e. a random partition Pk of N, with

PK being the trivial one consisting of the set of one point sets, and P0 the trivial one

with just one class N. All the other ones are non-trivial, and evidently, Pk+1 is a finer

partition than Pk. Actually, viewed backwards as a sequence of random partitions

PK ,PK−1, . . . ,P1,P0, it has a nice Markovian structure, as first proved in [7]. A most
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astonishing fact is that as random objects the point processes {πi} and the sequence

P = (PK ,PK−1, . . . ,P1,P0) are stochastically independent. Remark that the original

sequences of point processes fix ψ and therefore also the sequences of partitions, or

equivalently the function τ . One should keep in mind a trivial point: If one “forgets”

from where the point process {πi} is coming, one cannot define the overlaps. They are

only defined by keeping the information about the cascades.

As in the last section, we define the random probability distribution π⊗N on NN with

projections (the “replicas”) σi : NN → N. For two replicas σi, σj we define the overlap

through

Rij
def
= τ

(
σi, σj

)
which defines a random (under P) matrix, taking now values in 0, . . . , K.

Usually, in order to keep the relations with the SK-overlaps, one wants to have the

overlaps to take values in [0, 1] which can be achieved with a fixed monotone function

q : {0, . . . , K} → [0, 1], typically with

(18) q0 = 0 < q1 < · · · < qK ≤ 1,

but this is not important for the moment. Remark that randomness enters here again

in two ways: First, the point processes and therefore π and τ are chosen random, and

given these, we choose the σi randomly under π. We again denote the averaged law by

AVλ, this time with the parameter λ = (λ1, . . . , λK).

One can easily compute the distribution of the overlaps under AVλ:

AVλ (R1,2 = k) = λk+1 − λk, k = 0, . . . , K,

with the convention that λ0
def
= 0 and λK+1

def
= 1. If one uses the “reweighting” of the

overlaps by the qk in (18), one has

AVλ (R1,2 = qk) = λk+1 − λk, k = 0, . . . , K.

This distribution will become very important later, and is called the Parisi measure ζ

on R+ which for the moment is discrete:

(19) ζ (qk) = λk+1 − λk, k = 0, . . . , K.

The issue with the random bijection ψ ordering the probabilities may be slightly

puzzling: There are two ways to describe the model: Either we stay with the origi-

nal numbering of the Gibbs weights by X̄i, and then the overlap of i and j ∈ NK is

deterministically determined, or we take as index the natural numbers and the Gibbs

weights πi, but then, the overlap is itself random through the random bijection ψ.

Remarkably, the matrix R under AVλ satisfies the Ghirlanda-Guerra identity:

Given n ∈ N, n ≥ 2, one has for k = 1, . . . , K

(20) AVλ

(
R1,n+1 = k| (Rij)i,j≤n

)
=

1

n

n∑
j=2

1R1,j=k +
1

n
AVλ (R1,2 = k) .
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The proof is not too difficult. For the Ruelle probability cascades, essentially every-

thing can be computed explicitly.

In order to see the relation with the SK-model and Section 2it is convenient to view

the above random measure as a measure on a countable subset of a separable Hilbert

space H. This is always possible: Given a function q as (18), one can define a mapping

ρ : NK → H

such that for i = (i1, . . . , iK) , j = (j1, . . . , jK), one has ‖ρ (i)‖2
H = qK and

〈ρ (i) , ρ (j)〉H = qτ(i,j). Together with the random Gibbs weights from the Ruelle

cascade, one then has a Markov kernel G from the probability space (Ω,F ,P) on which

the point processes are defined to the Hilbert space. The replicas are then simply

independent random choices σi under G (ω, ·) and the overlaps Rij are defined via the

inner products 〈σi, σj〉 . Under AVλ, the distribution of the overlap is invariant under

(finite) permutations of the indices. Furthermore, by the very construction from the

Ruelle cascades, one has the ultrametricity property〈
σ1, σ3

〉
≥ min

(〈
σ1, σ2

〉
,
〈
σ2, σ3

〉)
,

so the ultrametricity property (8) is trivially satisfied in this case.

The big breakthrough by Panchenko is the deep result that the Ghirlanda-Guerra

identity essentially characterizes the overlap structure. The main step is a proof that

the identities imply ultrametricity, and ultrametricity together with Ghirlanda-Guerra

implies that the distribution of the overlap matrix is coming from a Ruelle cascade, at

least if the Parisi measure is finitely supported. This is the content of the next section.

We finish this section by describing the continuous time Markov process introduced

in [7], which, in principle, avoids the necessity to work with finitely many levels.

The Markov process {Γt}t≥0 takes values in the compact space E of partitionings

of N. Transitions are only allowed to coarser partitionings, i.e. for s ≤ t, we have

Γs ≺ Γt, where for two partitionings Λ,Λ′ of N into pairwise disjoint sets, Λ ≺ Λ′

means that any set A ∈ Λ is a subset of a set in Λ′. The process is described in terms

of its traces on the finite subsets IN
def
= {1, . . . , N} ⊂ N. The finite set of partitionings

of IN is denoted by EN . Of course, any partitioning Λ of N induces a partitioning of

IN which is denoted by πN (Λ) . We define the process
{

ΓNt
}
t≥0

for every N which in

the end will satisfy ΓNt = πN (Γt) .
{

ΓNt
}
t≥0

is a time homogeneous Markov process on

the finite set EN . Of course, in general, there is no reason that a Markov process on E

induces a Markov process on EN , but in our special case, it is true. A Markov process

on a finite space is described by its transition probabilities RN
t , which is the matrix(

RN
t (Λ,Λ′)

)
Λ,Λ′∈EN

given as

RN
t = exp

[
tAN

]
,

where AN is the infinitesimal generator, i.e. a matrix with non-negative off-diagonal

elements, and row sums 0. In our case, the description is very easy: If Λ has n ≥ 2
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classes and Λ′ is obtained from Λ by clumping exactly k ≥ 2 classes of Λ into one, then

AN (Λ,Λ′) =

[
(n− 1)

(
n− 2

k − 2

)]−1

.

All other matrix elements AN (Λ,Λ′) with Λ 6= Λ′ are 0. Furthermore,

AN (Λ,Λ) = −
∑

Λ′:Λ′ 6=Λ

AN (Λ,Λ′) .

Let
{

ΓNt
}
t≥0

be the Markov process on EN which starts with the trivial partitioning

of IN into one-point subsets. There is a very simple description of this process which

is based on the fact that also the total number of classes forms a Markov process. If

at a time t ≥ 0, ΓNt has n ≥ 2 sets, then it stays there for an exponential time with

expectation (n− 1)−1 after which it jumps to a partitioning by clumping a random

number κ ≥ 2 of sets with the probability n
n−1

1
k(k−1)

that κ = k. Conditional that

k sets are clumped, the choice which ones is done uniformly over all
(
n
k

)
possibilities.

Of course, if the process at time t has only one class left, then there is nothing to be

clumped anymore, and the process stays there for ever.

These processes are compatible for different N : If N ′ > N , then the process
{

ΓNt
}
t≥0

is the trace of
{

ΓN
′

t

}
t≥0

on EN . This implies that one can define the process {Γt}t≥0

on E, and in fact, one can prove that it is a strong Feller process. The process has the

property that at all times t > 0, Γt has infinitely many classes, and each of the classes

is an infinite subset of N.

Then the joint law of the (non-trivial) partitionings PK−1, . . . ,P1 coming from the

Ruelle cascades is the law of the sequence
(
Γu1 ,Γu2 , . . . ,ΓuK−1

)
with

e−ui =
λK−i
λK−i+1

.

This means that the overlap structure is obtained by observing the Markov process

{Γt} at discrete time points.

In this formulation, there is no necessity to stick to finitely many levels, and at first

sight, the approach using this Markov process appears more convenient. However, as

the invariance properties like Proposition 4 are easier to use in the point process setting,

most of the arguments in the literature, up to now, use the “finitely many level setting”,

and let K →∞ in the end.
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4. THE GHIRLANDA-GUERRA IDENTITIES IMPLY

ULTRAMETRICITY

We step back to the situation of Theorem 3 of a random probability distribution G

on the separable (real) Hilbert space H, i.e. a Markov kernel from a probability space

(Ω,F ,P) to the unit ball of H. The infinite product G⊗N defines a Markov kernel from

Ω to HN. Elements in HN are denoted by σ = (σ1, σ2, . . .) . We also write σ(n) for

(σ1, . . . , σn) . The overlap matrix is defined by the inner products

Rij =
〈
σi, σj

〉
,

and we write R(n) def
= (Rij)i,j≤n .

Consider then AV to be the measure
∫
G (ω, ·)⊗N P (dω) on HN. From the very

definition of AV, one sees that the distribution of (Rij) is the same as that of
(
Rπ(i),π(j)

)
for any permutation π of finitely many elements. There will occasionally be the necessity

to integrate a measurable function φ defined on Ω×HN:∫ (∫
φ (ω, σ)G⊗N (ω, dσ)

)
P (dω) .

By an abuse of notation, we will also simply write
∫
φ dAV for this expression, and for

a measurable subset A ⊂ Ω × HN we write AV (A) . The reader should keep in mind

that if an event or a function depends explicitly on ω, the AV-integrals have to be

understood in this sense.

Definition 6. — We say that the pair (P, G) satisfies the Ghirlanda–Guerra identity,

if for any N ≥ 2, the conditioned law of R1,N+1 given R(N) = (Rij)i,j≤N satisfies

(21) AV
(
R1,N+1 ∈ A|R(N)

)
=

1

N

N∑
j=2

1A (R1,j) +
1

N
AV (R12 ∈ A) .

Theorem 7 (Panchenko). — Assume (21). Then

(22) AV (R1,2 ≥ min (R1,3, R2,3)) = 1.

Theorem 8 (Panchenko). — Assume (21). Then the distribution of R under AV is

completely characterized by the Parisi measure

ζ
def
= AV (R1,2 ∈ ·) .

In the case where ζ is supported by a finite set, the AV-law of R is that coming from

the Ruelle cascades with this Parisi measure.

Remark 9. — That ultrametricity, Ghirlanda-Guerra and a finite support imply that

the distribution of R is that of a Ruelle cascade is not difficult, and was known before.

The important step was the proof of the ultrametricity.

Proposition 10. — If (P, G) satisfies the Ghirlanda-Guerra identities, then
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a) (Talagrand’s positivity result)

AV (R1,2 ≥ 0) = 1.

b) There exists a constant q∗ ≤ 1 such that

AV
(
‖σi‖2

H = q∗
)

= 1.

We will not prove this. See [20], Theorem 2.15 and Theorem 2.16.

b) says that the self-overlaps are all constant. The matrix R(3) therefore takes values

in the set of symmetric positive semidefinite matrices with q∗ on the diagonal. Denote

by S(n) the compact support of the distribution of R(n) under AV. The ultrametricity

claim (22) is equivalent with the statement that if q∗ a b

a q∗ c

b c q∗


is in S(3), then none of a, b, c is strictly smaller than the other two. Without loss of

generality, we may assume that a ≤ b ≤ c. So, by a slight abuse of notation, we write

S(3) for the set of triples (a, b, c) , a ≤ b ≤ c, such that the above matrix is in the

support. Ultrametricity is violated if we find an (a, b, c) ∈ S(3) with a < b. One easily

sees that one needs only to consider c < q∗. If (a, b, q∗) ∈ S(3) then it’s evident that

a = b. Therefore, the difficult task remains to prove

(23) (a, b, c) ∈ S(3), a ≤ b ≤ c < q∗ =⇒ a = b.

Panchenko’s proof of this crucial statement is very ingenious. It relies on a theorem

stating an invariance property of AV under a class of transformations if the Ghirlanda-

Guerra identities are satisfied. This invariance property implies a replication property

of the support. We state here Panchenko’s invariance property in a simplified version

which is sufficient for the purpose:

Let f : R→ R be a bounded measurable function, and Φ be a function of R(n). Let

also

(24) Ff (σ) =

∫
exp [f (〈σ, σ′〉)]G (dσ′) .

One should pay attention to the fact that F also depends explicitly on ω ∈ Ω through

the Gibbs measure G. In order to stress this, we occasionally write F (ω, σ).

Proposition 11. —

(25) AV (Φ) = AV

(
Φ

exp
[∑n−1

i=1 f (Ri,n) + AV (f (R1,2))
]

F (σn)n

)
.

Proof. — We replace f by tf : Write ϕ (t) for the right hand side of the above expression,

and ϕ(k) (t) for the k-th derivative of ϕ at t. As ϕ (0) = AV (Φ) it would suffice to prove

that the first derivative is 0 for t < 1. It however seems to be difficult to prove this

directly. The problem is that ϕ (t) for t > 0 is not a function of R(n) because of the
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denominator, and therefore, there seems to be no way to apply the Ghirlanda-Guerra

identities directly to evaluate ϕ′ (t) for t > 0. It however turns out that ϕ(k) (0) can

be expressed as an AV expectation of a function of R(n+k), and by an application of

the identity, one gets ϕ(k) (0) = 0 for all k. Together with some simple bounds for

supt≤1

∣∣ϕ(k) (t)
∣∣, one gets ϕ (1) = ϕ (0) . The computation of the derivatives is not

difficult, but a bit messy. Here is just the first one. Let

ψ
(
R(n)

) def
=
∑n−1

i=1
f (Ri,n) + AV (f (R1,2)) ,

Ft (σ)
def
=

∫
exp [tf (〈σ, σ′〉)]G (dσ′) .

ϕ′ (t) = AV

(
Φ
d

dt

exp
[
tψ
(
R(n)

)]
(Ft (σn))n

)

= AV

(
Φψ
(
R(n)

) exp
[
tψ
(
R(n)

)]
(Ft (σn))n

)

−nAV

(
Φ

exp
[
tψ
(
R(n)

)]
(Ft (σn))n+1

∫
f (〈σn, σ′〉) exp [tf (〈σn, σ′〉)]G (dσ′)

)
.

At t = 0, this gives by Ghirlanda-Guerra identity

AV
(
Φψ
(
R(n)

))
− nAV (Φf (Rn,n+1))

= AV
(
Φψ
(
R(n)

))
−

n−1∑
j=1

AV (Φf (Rj,n))− AVf (R1,2) AV (Φ)

= 0.

We skip the computation for the higher order derivatives (see [20] Theorem 2.18).

Consider now a further bounded function w : R→ R and define

Sw (ω, σ)
def
=

∫
w (〈σ, σ′〉)G (ω, dσ′)

Tw (ω, σ)
def
=

∫
w (〈σ, σ′〉) exp [f (〈σ, σ′〉)]G (ω, dσ′)

F (ω, σ)
.

Then, for any bounded measurable function ψ : R→ R

Corollary 12. — For Φ as above and any bounded measurable function W , one has

AV
(
Φ
(
R(n)

)
ψ (S (σn))

)
= AV

(
Φ
(
R(n)

)
ψ (T (σn))

exp
[∑n−1

i=1 f (Ri,n) + AV (f (R1,2))
]

F (σn)n

)
.
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Proof. — It suffices to prove the statement for polynomials ψ. So, we take ψ (x) = xk.

Φ
(
R(n)

)
T (σn)k =

Φ
(
R(n)

)
F (σn)k

∫
exp

[∑k

j=1
f (Rn,n+j)

]
×

k∏
j=1

w (Rn,n+j)G
(
·, dσn+j

)
.

Therefore, if we put

Φ′
(
R(n+k)

) def
= Φ

(
R(n)

) k∏
j=1

w (Rn,n+j) ,

the right hand side of the claimed equation is

AV

Φ′
(
R(n+k)

) exp
[∑n−1

i=1 f (Ri,n) +
∑n+k

i=n+1 f (Ri,n) + AV (f (R1,2))
]

F (σn)n+k


which, by the previous proposition, equals

AV

(
Φ
(
R(n)

) k∏
j=1

w (Rn,n+j)

)
= AV

(
Φ
(
R(n)

)
S (σn)k

)
.

Proposition 13. — Assume that (a, b, c) ∈ S(3), c < q∗, and that the Ghirlanda-

Guerra identities (21) are satisfied. Then for every m, there exists a 3m× 3m matrix

(rij)i,j≤3m ∈ S(3m) which satisfies

–

rij ≤ c, ∀i 6= j

–

rij = a, for 1 ≤ i ≤ m, m+ 1 ≤ j ≤ 2m,

–

rij = b, for 1 ≤ i ≤ m, 2m+ 1 ≤ j ≤ 3m,

–

rij = c, for m+ 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ 3m.

Proof that Proposition 13 implies (23). — Assume (a, b, c) ∈ S(3), a ≤ b ≤ c < q∗. If

σi ∈ H satisfy 〈σi, σj〉 = rij and the rij satisfy the above properties, then〈
σ̄1, σ̄2

〉
= a,

〈
σ̄1, σ̄3

〉
= b,

〈
σ̄2, σ̄3

〉
= c,

where

σ̄i
def
=

1

m

mi∑
j=m(i−1)+1

σj,
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and ∥∥σ̄1
∥∥2

H
=
q∗

m
+

1

m2

∑
i 6=j, 1≤i,j≤m

〈
σi, σj

〉
≤ q∗ − c

m
+ c,

and the same estimate for ‖σ̄2‖2
H , ‖σ̄3‖2

H . Therefore,∥∥σ̄2 − σ̄3
∥∥2

H
≤ 2 (q∗ − c)

m
.

On the other hand

b− a =
〈
σ̄1, σ̄3 − σ̄2

〉
≤
∥∥σ̄1
∥∥
H

∥∥σ̄2 − σ̄3
∥∥
H

≤ 2 (q∗ − c)
m

.

This implies a ≥ b, i.e. a = b.

Proof of Proposition 13. — The replication property follows by induction of the follow-

ing statement:

Claim 14. — Let A ∈ S(n) satisfy a∗n
def
= max (a1,n, . . . , an−1,n) < q∗. Then there exists

an extension A′ ∈ S(n+1) of A such that ai,n+1 = ai,n for i ≤ n − 1, and an,n+1 ≤ a∗n.

(Extension here means that A is the n × n-matrix obtained from removing the last

column and row of A′.)

To prove the claim, we will prove that, for all ε > 0, one has

(26) AV
(
R(n) ∈ Uε (A) , |Ri,n+1 − ai,n| ≤ ε, i ≤ n− 1, Rn,n+1 < a∗n + ε

)
> 0,

where Uε (A) denotes the componentwise ε-neighborhood of A, which evidently proves

the claim. The argument is best done indirectly, by assuming that for some ε > 0

(27) AV
(
R(n) ∈ Uε (A) , |Ri,n+1 − ai,n| ≤ ε, i ≤ n− 1, Rn,n+1 < a∗n + ε

)
= 0

Define

Σ
(
σ(n−1)

) def
=
{
σ ∈ H :

∣∣〈σ, σi〉− ai,n∣∣ ≤ ε, i ≤ n− 1
}
,

and let A′ be the matrix obtained from A by erasing the last row and the last column.

A reformulation of (27) gives

AV
(
R(n−1) ∈ Uε (A′) , σn, σn+1 ∈ Σ

(
σ(n−1)

)
,
〈
σn, σn+1

〉
< a∗n + ε

)
= 0.

We use Corollary 12 with w (x) = 1x≥a∗n+ε, and f = tw with t ≥ 0 which will be

chosen later. Then

Sw (ω, σn)
def
= G (ω, {σ : 〈σ, σn〉 ≥ a∗n + ε}) .

It is easy to see that A ∈ S(n) implies that given ε > 0, there exist δ > 0, 0 < p < 1/2,

such that

(28) AV
(
R(n) ∈ Uε (A) , p ≤ S (σn) ≤ 1− p

)
≥ δ.

F according to (24) is:

F (ω, σn) = S (ω, σn)
(
et − 1

)
+ 1 ≥ 1.
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By Corollary 12, applied to ψ (x) = 1p≤x≤1−p, we get

AV

(
e
∑n−1
i=1 f(Ri,n)+AV(f(R1,2))

F (σn)n
;R(n) ∈ Uε (A) , p ≤ T (σn) ≤ 1− p

)
≥ δ.

Evidently, f (Ri,n) = 0 on R(n) ∈ Uε (A) , and

AV (f (R1,2)) = tAV (R1,2 ≥ a∗n + ε) = tγ,

where γ < 1. Therefore, as F (σn) ≥ 1, we get

(29) AV
(
R(n) ∈ Uε (A) , T (σn) ≤ 1− p

)
≥ δe−γt.

An elementary computation gives that T (ω, σn) ≤ 1− p implies

S (ω, σn) ≤ 1− p
p

e−t.

Consider now

Λ
(
ω, σ(n−1)

) def
=
{
σn ∈ H : σn ∈ Σ

(
σ(n−1)

)
, T (ω, σn) ≤ 1− p

}
,

and

Π
def
=
{(
ω, σ(n−1)

)
∈ Ω×Hn−1 : G

(
ω,Λ

(
ω, σ(n−1)

))
> 0
}
.

Then

AV
(
R(n) ∈ Uε (A) , T (σn) ≤ 1− p

)
=

∫
P (dω)

∫
Uε(A′)

G⊗(n−1)
(
ω, dσ(n−1)

)
G
(
ω,Λ

(
ω, σ(n−1)

))
.

For any
(
ω, σ(n−1)

)
∈ Π, we can choose a σ′ ∈ Λ

(
ω, σ(n−1)

)
for which one has S (ω, σ′) ≤

(1− p) e−t. However, fixing this σ′, almost all σn ∈ Σ
(
σ(n−1)

)
satisfy 〈σ′, σn〉 ≥ a∗n + ε

by (27), and therefore, for any
(
ω, σ(n−1)

)
∈ Π, one has

G
(
ω,Λ

(
ω, σ(n−1)

))
≤ G

(
ω,Σ

(
σ(n−1)

))
≤ S (σ′) ≤ 1− p

p
e−t.

Therefore

AV
(
R(n) ∈ Uε (A) , T (σn) ≤ 1− p

)
≤

∫ (
P⊗G⊗(n−1)

) (
d
(
ω, σ(n−1)

))
1Π

((
ω, σ(n−1)

))
G
(
ω,Λ

(
ω, σ(n−1)

))
≤ 1− p

p
e−t.

As the left hand side is ≥ δe−γt, by (29), it follows that

δ ≤ 1− p
p

eγte−t,

which leads to a contradiction when choosing t large enough, as γ < 1.
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5. ULTRAMETRICITY IMPLIES THE PARISI FORMULA

The first proof of the Parisi formula was given by Guerra [15] and Talagrand [24].

Guerra first proved the upper bound for f (β), also including the case of an external

field. A bit later, Talagrand then proved the lower bound. Guerra’s proof of the

upper bound relies on a very clever interpolation argument. It’s easiest to formulate his

argument in terms of the Random Overlap Structures introduced in [6]. We will not

discuss it here, but just mention that Guerra proved that the finite N free energy can be

bounded from above by the corresponding Parisi expression for any N . Guerra’s proof

depends on very special monotonicity properties of the SK-model. These monotonicity

properties are also satisfied by p-spin models, but there are many other mean-field spin

glasses where they are not satisfied, for instance the perceptron, the K-SAT, and even

the bipartite SK-model. To this day, there is no proof of the upper bound without

using such monotonicity properties. Panchenko’s new proof of the lower bound does

not replace Guerra’s argument.

Although Guerra’s proof, particularly if framed in the setup of the Aizenman-Sims-

Starr concepts, strongly suggests that there must be ultrametricity behind the Parisi

formula, Talagrand’s technically very complicated proof of the lower bound bypasses

ultrametricity altogether, and actually doesn’t give a clue how to prove it.

Panchenko’s proof of ultrametricity sketched in the last section gives a proof of ul-

trametricity for the SK- and related models, not quite in the form given in (7), but

for a model with a slightly perturbed Hamiltonian. The reason is that the Ghirlanda-

Guerra identities can be proved only for the SK-model with a perturbed Hamiltonian.

The perturbation is however so small that it does not affect the free energy. Together

with Guerra’s upper bound for the free energy, this then gives a new proof of the lower

bound, proving the Parisi formula. We give a rough outline of the chain of arguments.

Unfortunately, it is still technically somewhat involved, and we cannot give all details.

First, we have to present the Parisi formula:

Consider two chains of parameters

0 < λ1 < · · · < λK < 1,

0 = q0 < q1 < · · · < qK = 1,

where K ∈ N. As remarked before, this can be collected into the Parisi measure

ζ
def
=

K∑
k=0

(λk+1 − λk) δqk ,

where λ0 = 0 and λK+1 = 1.

Consider also K independent standard Gaussian random variables Z1, . . . , ZK . Then

set

XK = log cosh
(
β
∑K

k=1
Zk
√
qk − qk−1

)
+ log 2.
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Next define recursively downwards for m = 0, . . . , K − 1

Xm =
1

λm+1

logEZm+1exp [λm+1Xm+1] ,

where EZm+1 refers to taking the expectation with respect to Zm+1. X0 is then a real

number. (There is a slight complication in the case, the SK-model has an external field:

In this case, X0 will still be random.) The Parisi functional is given by

(30) P (ζ)
def
= X0 −

β2

4

K∑
k=1

λk
(
q2
k − q2

k−1

)
.

The Parisi formula for the SK-model (with h = 0) is:

Theorem 15 (Parisi, Guerra, Talagrand). —

(31) f (β) = infζP (ζ) .

The replica symmetric expression (10) is obtained by restricting the infimum to Parisi

measures with K = 2, but it is believed (but mathematically not proved) that for β > 1,

the infimum is not attained for a finite K.

The next observation is that the Parisi functional is closely connected with the Ruelle

cascades described in Section 3.2.

Consider the cascades with parameters λi as above and independent standard Gaus-

sian Zi(k) for 1 ≤ k ≤ K, i ∈NK , where i(k) def
= (i1, . . . , ik) . For an increasing function ψ,

define

gψ (i)
def
=

K∑
k=1

Zi(k) (ψ (qk)− ψ (qk−1)) .

Lemma 16. —

P (ζ) = log 2 + E log
∑
i

X̄i cosh gψ1 (i)− E log
∑
i

X̄i cosh gψ2 (i) ,

where

ψ1 (x)
def
= β2x, ψ2 (x)

def
=
β2x2

2
,

and where the “Gibbs weights” X̄i are given by (17).

The proof of the lemma is not too complicated, but needs an application of invariance

properties, like 4. To get the connection of this expression of P (ζ) with the SK-model,

we have to discuss shortly the so-called cavity method in the version found by Aizenman,

Sims and Starr [6]). From this computation, one will see that the free energy of the
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SK-model is related to expressions which resemble the expression given in the above

lemma. The idea is to relate the N system with the (N + 1)-system.

ZN+1 =
∑

σ∈{−1,1}N+1

exp

[
β√
N + 1

∑
i<j≤N+1

gijσiσj

]

=
∑

σ∈{−1,1}N+1

exp

[
β√
N + 1

∑
i<j≤N

gijσiσj +
β√
N + 1

σN+1

N∑
i=1

gi,N+1σi

]

=
∑

σ∈{−1,1}N
exp

[
β√
N + 1

∑
i<j≤N

gijσiσj

]
2 cosh

(
β√
N + 1

N∑
i=1

gi,N+1σi

)
= 2 〈cosh (βzN (σ))〉′ ,

where

(32) zN (σ)
def
=

1√
N + 1

N∑
i=1

gi,N+1σi,

and 〈·〉′ refers to taking the Gibbs expectation on the N system, but with the Hamil-

tonian

H ′N
def
= − 1√

N + 1

∑
1≤i<j≤N

gijσiσj.

We can also write ZN in terms of this Hamiltonian, as

1√
N

∑
1≤i<j≤N

gijσiσj =L
1√
N + 1

∑
1≤i<j≤N

gijσiσj + yN (σ)

with

(33) yN (σ)
def
=

1√
N (N + 1)

∑
1≤i<j≤N

g′ijσiσj

with some new independent standard Gaussians g′ij, independent also of the gij. =L

means equality in law. Therefore if we set FN
def
= N−1E logZN , we get

E logZN = E log 〈yN (σ)〉+ E logZ ′N,β,

E logZN+1 = E log 〈2zN (σ)〉+ E logZ ′N,β,

and therefore

AN = E logZN+1 − E logZN(34)

= E log 〈2 cosh (βzN (σ))〉′ − E log 〈exp [βyN (σ)]〉′ ,

FN =
1

N

N−1∑
j=0

Aj,
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and

(35) f (β) = lim
N→∞

FN ≥ lim inf
N→∞

AN .

This is the basis for getting a lower bound by relating (34) to the Parisi expression

(30). The existence of the first limit was proved first in [16]. Of course, if one could

prove the existence of limN→∞An, and identify it with the Parisi expression, one would

have finished the proof of the Parisi formula. This seems not to be possible. However,

the upper bound for f is known by the Guerra’s interpolation technique.

The task which remains is to prove that the right-hand side of (35) is bounded from

below by the Parisi expression. This is based on the fact, which was known since

long, see [14], [3], that a slightly perturbed SK-model satisfies the Ghirlanda-Guerra

identities. This perturbation is technically a bit awkward, and we cannot explain it

here in details. Essentially one considers a Hamiltonian

Hpert
N (σ) = HN (σ) + ΠN (σ)

where

ΠN (σ)
def
=

∞∑
p=1

2−pxpN
−p/2

N∑
j1,...,jp=1

g′i1,...,ipσi1 · · ·σip ,

where the g′i1,...,ip are standard Gaussians, independent of the Gaussians in the main

part HN , and where still the parameters xp ∈ [1, 2] have to be chosen carefully in order

to make the following arguments work. The main point is that var (ΠN (σ)) is of order 1,

due to the scaling by N−p/2. It is not difficult to see that this implies that the free energy

is not affected in the N →∞ limit by the perturbation. The perturbation, when done

carefully, actually even with an averaging over the additional parameters xp, implies that

the distribution of the overlaps satisfies approximately the Ghirlanda-Guerra identities,

with an error which goes to 0 as N → ∞, and also, as proved by Talagrand, that

the overlaps are positive, with large probability. The Ghirlanda-Guerra identities in

this framework were first proved in [14], [3], and variants were proved by many other

authors. See also the book by Talagrand [25].

It then follows that any weak limit along a subsequence of the distribution of the

overlaps

RN
i,j

def
=

1

N

N∑
k=1

σikσ
j
k

under AVpert def
=
∫
Gpert⊗N
N,β dP, where P governs the laws of the Gaussian interaction

variables, has the exchangeability property, which, by the Dovbysh-Sudakov theorem,

implies the representation as the law of the inner products in a Hilbert space H,

under the law given by a random measure GDS on H, with an abstract probability

space behind, which we denoted by
(
Ω,F ,PDS

)
. The fact that RN under AVpert satis-

fies Ghirlanda-Guerra implies that
(
GDS,PDS

)
satisfies Ghirlanda-Guerra exactly, and

therefore, by the Theorems 7 and 8, is ultrametric, and determined by the Parisi mea-

sure ν (dx) = AVDS (R1,2 ∈ dx). In case ν has finite support, the distribution is that
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coming from the Ruelle cascade with this Parisi measure. As we don’t know anything

about convergence along the original sequence, there can be arbitrarily many of such

Dovbysh-Sudakov pairs, and Parisi measures.

It’s now tempting to apply this to the evaluation of AN for large N. We first choose

a subsequence, such that ANk →k→∞ lim infN→∞AN . Then we choose a further subse-

quence of {ANk} such that the law of RN along this subsequence converges to the law

of the inner products under AVDS. We would like to conclude that lim infN→∞AN can

be expressed through AVDS. This is not quite obvious as the AN cannot directly be

expressed through the overlaps. It requires an additional approximation argument. The

basic observation is that the covariances of yN (σ), and zN (σ) given in (33) and (32)

are expressed in terms of the overlaps of σ. This implies that AN can be approximated

by functions of finite restrictions of the overlap matrix. In case the Parisi measure ν

has finite support, one can conclude in this way, using Lemma 16 that

lim inf
N→∞

AN = P (ζ) ≥ infξP (ξ) .

In the case of a general Parisi measure, appearing through the limits along the sub-

sequences defined above, an additional approximation is needed, but one concludes

that

lim inf
N→∞

AN ≥ infξP (ξ) .

Together with Guerra’s upper bound, this finally proves the Parisi formula.
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