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C∗-SIMPLICITY
[after Breuillard, Haagerup, Kalantar, Kennedy and Ozawa]

by Sven Raum

INTRODUCTION

Associated with a discrete group G there is the reduced group C*-algebra, defined as
the closure of the complex group ring CG acting on the Hilbert space `2(G) of square
summable squences on G as bounded operators by left convolution ugδh = δgh. We
denote the reduced group C*-algebra by C∗red(G) = CG‖·‖ ⊂ B(`2G). This C*-algebra
naturally relates to unitary representation theory of G through the notion of weak con-
tainment of representations [17]. A discrete group G is called C*-simple if C∗red(G) is
simple as a C*-algebra, that is every two-sided closed ideal is trivial, which translates
to the property that every weakly regular unitary representation of G is automatically
weakly equivalent to its regular representation. Immediately from these definitions it is
clear that results on C*-simplicity can provide interesting examples of C*-algebras and
they help to provide norm estimates for operators in unitary representations. More-
over, C*-simplicity can be considered a strong form of non-amenability of groups. The
original motivation to study C*-simplicity was purely operator algebraic: as Pierre de
la Harpe reports in [13, p.13], Powers was motivated to prove simplicity of C∗red(F2) by
a question due to Kaplansky: is every unital simple C*-algebra generated by its projec-
tions? Kadison’s suggestion that C∗red(F2) might solve this question in the negative, led
to a proof of its simplicity within two weeks, already in 1967. However, this result [49]
was only published in 1975 and it took until 1984 when Pimser-Voiculescu could prove
absence of non-trivial projections in C∗red(F2). One year earlier, Blackadar had solved
Kaplansky’s question in the negative by completely different methods.

After Powers published his result in 1975 until 2014, research on C*-simplicity was
dominated by combinatorial methods which were formalised by Pierre de la Harpe
[12, p.232] in terms of the Powers property later followed by numerous weakenings
and variations. Early on it was known that normal amenable subgroups N E G are
an obstruct to C*-simplicity, since the quotient map of groups G/toG/N extends to
a *-homomorphisms C∗red(G) → C∗red(G/N). We refer to [5, Appendix G] for basic
properties of amenable groups. Notably, the amenable radical of G is its maximal
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normal amenable subgroup. For about 30 years combinatorial methods stayed at the
heart of developments in C*-simplicity, trying to address the following main problem.

Problem 1. — Clarify the relation between the following three statements for a discrete
group G.

– G is C*-simple.
– G has the unique trace property.
– The amenable radical of G is trivial.

Here a discrete group G is said to have the unique trace property if C∗red(G) admits
a unique tracial state, that is a unique linear functional τ : C∗red(G) → C such that
τ(x∗x) ≥ 0 and τ(xy) = τ(yx) for all x, y ∈ C∗red(G). While it was clear that every
C*-simple group and every group with the unique trace property must have a trivial
amenable radical, it was not even known whether every C*-simple group necessarily has
the unique trace property, or even any idea of a proof that C*-simplicity or the unique
trace property would have concrete implications on the structure of G.

The major breakthrough in the field of C*-simplicity was obtained in the combination
of work by Kalantar-Kennedy in [37] and by Breuillard-Kalantar-Kennedy-Ozawa in [6].
At the heart of this development lies the following characterisation of C*-simplicity in
terms of topological dynamics.

Theorem 2 ([37, Theorem 1.5] and [6, Theorem 1.1]). — A discrete group G is C*-
simple if and only if its action on the Furstenberg boundary is topologically free.

The Furstenberg boundary is a compact G-space introduced in [23] and featuring
in a different disguise in [30, Remark 3]. It is introduced in Definition 20. With this
characterisation at hand, Breuillard-Kalantar-Kennedy-Ozawa solved virtually all open
questions on C*-simplicity in [6]. In particular, the unique trace property could be
definitively related to the structure of the group G by the following theorem.

Theorem 3 ([6, Theorem 1.3]). — A discrete group has the unique trace property if
and only if its amenable radical is trivial. In particular, every C*-simple group has the
unique trace property.

This result, together with le Boudec’s examples of groups with trivial amenable
radical that are not C*-simple [42], clarified all general relations in Problem 1. However,
in many classes of groups, an equivalence between these three statements can be proven,
and it is another major contribution of [6] to prove easily applicable sufficient criteria
for C*-simplicity, based on the notion of normalish subgroups: a subgroup H ≤ G is
normalish if for every g ∈ G the set H ∩ gHg−1 is infinite.

Theorem 4 ([6, Theorem 6.2]). — A discrete group with no non-trivial finite normal
subgroups and no amenable normalish subgroups is C*-simple.

The present document focuses on the following tasks.
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– In Section 1, we report on the notions in operator systems that led in [37] to the
discovery of the connection between Furstenberg boundary and C*-simplicity.

– In Sections 2, 3 and 4 we report on the main achievements of [6] and provide a new
proof for Theorem 2 which does not make any use of operator algebraic notions.

– In Section 5 we report on how these results were used by Kennedy and Haagerup
in [39, 27] to relate back to original ideas of Powers.

– In Section 6 we summarise contemporary research related to C*-simplicity.
Given de la Harpe’s exhaustive 2007 survey on C*-simplicity [13], we refrain from

a more detailed presentation of developments in C*-simplicity before 2014, the year
when the first versions of [37, 6] were published on arXiv. We provide a short list of
references of articles on C*-simplicity between 2007 and 2014. Most of these articles
addressed Problem 1 for particular classes of groups, proving equivalence between all
three mentioned properties in the respective class. Linear groups were considered in
[50], 3-manifold groups in [14], certain amalgamated free products in [34], convergence
groups in [44] and acylindrically hyperbolic groups in [11]. It has to be pointed out that
[50], following a series of revisions on arXiv, was never published, however the article’s
results are recovered as [6, Theorem 1.6] with an independent proof. A result in another
direction can be found in [46], which provided the first examples of C*-simple groups
without free subgroups, thereby showing the limits of general combinatorial ideas.
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1. BOUNDARIES

At the root of the breakthrough in C*-simplicity taking place since 2014 lies the
discovery of connections between C*-algebras/representation theory on the one side
and topological dynamics on the other side. While similar connections in a measurable
setting, that is between von Neumann algebras and Poisson boundaries, were already
successfully exploited in the past (e.g. in [10]), a major impact on C*-algebraic prob-
lems could only be observed after Kalantar-Kennedy [37] linked C*-simplicity with
topological dynamics on two classical boundaries which were identified with each other:
the Hamana boundary (Definition 15) and the Furstenberg boundary (Definition 20).
Interestingly, this identification had already been stated by Hamana in [30, Remark 4],
however the profound impact on our understanding of C*-simplicity had its advent in
[37]. In this section we provide an exposition of both these boundaries, emphasising how
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their major properties – injectivity and essentiality on the side of the Hamana bound-
ary, and universality and strong proximality on the side of the Furstenberg boundary –
are related to each other.

1.1. The Hamana boundary
The Hamana boundary appears as a special instance of a more general theory of

injective envelopes of operator algebras developed by Hamana in the 70s in [31, 32], in
analogy with the theory of injective hulls of modules [18].

Although later accounts of C*-simplicity, notably [6], try to avoid the notion of
operator systems and we provide an operator algebra free proof of the characterisation
of C*-simplicity in Section 2, the setting of operator systems was crucial for the initial
discovery in [37] that C*-simplicity and topological dynamics are closely related. The
past teaches us that operator algebras are often essential to discover new theories that
later can be formulated in more elementary language. In view of this lesson and in
the hope of further developments, an account on C*-simplicity would not be complete
without a discussion of the ideas from operator systems underlying the discovery of
[37].

Let us begin by recalling some basic facts on operator systems which are necessary in
what follows. On a historical note, operator systems were first used in [2] and obtained
their name in [9, p. 157]. Note that every unital C*-algebra (when represented on a
Hilbert space) is an operator system in the sense of the following definition.

Definition 5. — An operator system is a unital, self-adjoint subspace of B(H) for
some Hilbert space H.

Recall that an operator in x ∈ B(H) is called positive if it self-adjoint and its spectrum
lies in the positive half-line. Equivalently, x = y∗y for some y ∈ B(H). An operator
system V ⊂ B(H) is generated by the cone of its positive elements V +, since v = v∗ ∈ V
implies v + ‖v‖1 ∈ V +. Thus V inherits an order structure from positivity in B(H).
The algebraic tensor products Mn(C)⊗ V ⊂ Mn(C)⊗B(H) similarly inherits an order
structure from positivity. In fact, operator systems admit an intrinsic characterisation
in terms of these order structures, however here we only use it to define morphisms
between operator systems.

Definition 6. — A linear map ϕ : V → W between operator systems is called com-
pletely positive, if ϕn : Mn(C) ⊗ V → Mn(C) ⊗W is positive for all n ∈ N≥1, that is
the image of every positive element under ϕn is positive. A unital completely positive
map is abreviated as a ucp map.

Given a discrete group G, a G-operator system is an operator system V with an
action of G by ucp maps, which automatically are complete order isomorphisms. An
equivariant ucp map between G-operator systems is called G-ucp map.

In analogy to the theory of C*-algebras, a state on an operator system V is a unital
positive linear functional of norm one. The set of all states on V is denoted by S(V ).
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It is a classical theorem of Stinespring that every state is a ucp map [54]. Considering
C = C({pt}), this generalises to the following important correspondence between G-
ucp maps into commutative C*-algebras and continuous maps into the state space of
an operator system. This observation provides the main connection between operator
system theory and topological dynamics.

Proposition 7. — Let V be a G-operator system and X a compact G-space. Com-
posing a G-ucp map Φ : V → C(X) with the evaluation maps evx : C(X) → C,
evx(f) = f(x), we obtain a bijection between

– G-ucp maps Φ : V → C(X).
– G-equivariant maps X → S(V ).

Let us fix the relevant notion of injectivity, which is equivalent to the categorical
definition.

Definition 8. — A G-operator system V is injective if for every inclusion of G-
operator systems X ⊂ Y and any G-ucp map X → V there is an extension to a G-ucp
map Y → V .

In view of the previous discussion on states, it is clear that the Hahn-Banach theorem
implies injectivity of the operator system C. Further, Arveson’s Extension Theorem [2,
Theorem 1.2.3] says that the operator system B(H) are injective for arbitrary Hilbert
spaces H.

Recall that an the injective hull of an R-module M is a monomorphism M ↪→ E into
an injective R-module E, which is essential in the sense that any non-trivial submodule
of E intersectsM non-trivially. The following definition of Hamana provides the correct
analogues of these properties for operator systems. We make use of the notion of
complete isometries between operator systems, that is linear maps ϕ : V → W for
which all amplifications ϕn : Mn(C) ⊗ V → Mn(C) ⊗ W are isometric. Completely
isometric ucp maps play the role of monomorphisms between operator systems.

Definition 9 ([32, Definitions 2.3 and 2.5]). — Let V ⊂ W be an inclusion of G-
operator systems.

– The inclusion V ⊂ W is called essential, if every G-ucp map Φ : W → X that is
completely isometric on V must be completely isometric on W .

– The inclusion V ⊂ W is an injective envelope of V if it is essential and W is
injective. We denote it by V ⊂ IG(V ).

From this definition of injective envelope, its uniqueness (up to isomorphism) is not
immediately clear. It rather follows from the next rigidity property.

Definition 10 ([32, Definition 2.4]). — An inclusion of G-operator systems V ⊂ W

is rigid if every G-ucp endomorphism of W that restricts to the identity on V must be
the identity on W .
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Hamana noted that for injective extensions of operator systems essentiality and rigid-
ity are equivalent.

Lemma 11 ([32, Lemma 3.7]). — Let V ⊂ W be an inclusion of G-operator systems
and assume that W is injective. Then V ⊂ W is essential if and only if it is rigid.

For discrete groups as they are considered in this exposition, the work of [32] extends
from the setting of operator systems to G-operator systems, showing the following
theorem.

Theorem 12 ([32, Theorem 4.1]). — Every G-operator system admits an injective
envelope.

As Hamana states [32, p.775], his work allows to show the next analogue of the
Eckmann-Schopf’s characterisation of injective hulls of modules [18, Statement 4.2].
This result provides motivation for the definition of an injective envelope. Since a proof
is not spelled out in [32], but very short when following the idea of Eckmann-Schopf,
we include it for the reader’s convenience.

Proposition 13. — Let V ⊂ W be an inclusion of G-operator systems. The following
properties are equivalent:

– V ⊂ W is the injective envelope.
– W is a maximal essential extension of V .
– W is minimal injective over V .

Proof. — Since essentiality is a transitive property, it suffices to prove that aG-operator
system W is injective if and only if it is maximal essential over itself.

Assume that W is injective and let W ⊂ X be an essential extension. By injectivity
there is a G-ucp map Φ : X → W such that Φ|W = idW . So essentiality implies that
Φ is injective, which shows W = X. Assuming conversely that W is maximal essential
over itself, it must be equal to its injective envelope and hence injective.

Given a discrete group G, a G-C*-algebra is a C*-algebra with an action of G by
*-automorphisms. Moving towards the definition of the Hamana boundary of a group,
we discuss the so called Choi-Effros product which can be used to define a G-C*-algebra
structure on an injective envelope of a G-C*-algebra. In fact, the proof of [9, Theorem
3.1] is based on the existence of a projection B(H) → V onto an operator system.
Inspection of the proof shows independence of the concrete choice of B(H), which may
be replaced by any C*-algebra. As a consequence, since every G-operator system can
be embedded into a G-C*-algebra such as `∞(G,B(H)) (cf. the remarks following
Definition 8), the work of Choi-Effros shows the following statement.

Theorem 14 ([9, Theorem 3.1]). — Every injective G-operator system V carries a
product turning it into a G-C*-algebra whose underlying operator system is V . This
product is unique up to G-ucp automorphisms of V . If V can be included into an abelian
G-C*-algebra, then this product on V is commutative.
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Applying this result to the special case of the trivial G-operator system C, we obtain
the Hamana boundary.

Definition 15. — The Hamana boundary of a group G is the compact G-space ∂HG =
spec(IG(C)), the injective envelope IG(C) being considered as an abelian G-C*-algebra.

We are next going to provide a dynamical characterisation of essential extensions.
This together with Proposition 23 makes it clear how essential extensions of G-operator
system and strong proximality of compact G-spaces are related to each other.

A convex G-space is a convex G-invariant subset of a locally convex vector space with
G-action by topological vector space isomorphisms. We call a compact convex G-space
C irreducible if every closed convex G-subset of it is either empty or equals C. Further,
observe that given two operator systems V,W a ucp map ϕ : V → W is isometric if and
only if ϕ∗ : S(W ) → S(V ) is surjective. This is because of compactness of the state
space combined with the fact that functionals are norming.

Proposition 16. — Let V ⊂ W be an inclusion of G-operator systems such that
Gy S(V ) is irreducible. Then the following statements are equivalent.

– W is an essential extension of V
– Gy S(W ) is irreducible.

Proof. — Assume that V ⊂ W is essential. Let ϕ ∈ S(W ) and denote by Pϕ : W →
`∞(G) the Poisson map associated with ϕ, which satisfies Pϕ(w)(g) def= (gϕ)(w). Since
Pϕ composed with any evaluation map on `∞(G) is positive, it follows that Pϕ is
completely positive. Since Gy S(V ) is irreducible, it follows that for v ∈ V

‖Pϕ(v)‖ = sup
g∈G
|(gϕ)(v)| = sup

ψ∈S(V )
|ψ(v)| = ‖v‖.

Since `∞(G) is abelian, this shows that (Pϕ)|V is completely isometric. Because V ⊂ W

is essential, it follows that Pϕ is completely isometric, so that P∗ϕ : S(`∞(G))→ S(W )
is surjective. Since S(`∞(G)) is the G-convex closure of eve, and Pϕ(eve) = ϕ, it follows
that the G-convex closure of ϕ is S(W ). Since ϕ was arbitrary, this shows irreducibility
of Gy S(W ).

Assume now that G y S(W ) is irreducible. In order to show that V ⊂ W is
essential, let Φ : W → X be a G-ucp map such that Φ|V is completely isometric. Pick
any ϕ ∈ S(X) and note that the G-convex closure of ϕ◦Φ equals S(W ) by irreducibility.
Denote by C ⊂ S(X) the G-convex closure of ϕ and let w ∈ W . Then

‖w‖ = sup
ψ∈S(W )

|ψ(w)| = sup
ψ∈C

(ψ ◦ Φ(w)) ≤ ‖Φ(w)‖.

It follows that Φ is isometric and hence completely isometric since it is completely
positive.
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Applying the previous proposition to the injective envelope of the trivial G-operator
system C, we obtain an important statement about the Hamana boundary, which is
to be seen in light of Proposition 23. In dynamical terms, the Hamana boundary is a
G-boundary.

Corollary 17. — For every group G the action Gy P(∂HG) is irreducible.

Point stabilisers of the Hamana boundary are amenable.

Proposition 18 ([22, Proposition 7]). — Let G be a group. For every x ∈ ∂HG, the
fix group Gx ≤ G is amenable. Further, the kernel of Gy ∂HG is the amenable radical
R(G).

Proof. — Let x ∈ ∂HG. Since C(∂HG) is an injective G-operator system, there is
a G-ucp projection `∞(G) → C(∂HG). Composing this map with the Gx-invariant
evaluation map evx : C(∂HG)→ C, we obtain a Gx-invariant state on `∞(Gx) ⊂ `∞(G).
This implies that the kernel of Gy ∂HG is amenable, so it is contained in the amenable
radical.

For the reverse inclusion, let µ ∈ P(∂HG) be some probability measure fixed by the
amenable radical of R(G). For every g ∈ G, normality of R(G) implies that gµ is
R(G)-fixed. Since G y P(∂HG) is irreducible by Corollary 17, it follows that R(G)
fixes every probability measure on ∂HG and hence it lies in the kernel of Gy ∂HG.

A final important property of the Hamana boundary is that it is extremally discon-
nected in the sense that the closure of any of its open subsets is clopen. This property
can be directly obtained from properties of operator systems.

Proposition 19. — The Hamana boundary is extremally disconnected.

Proof. — First observe that every injective G-operator system V is injective as an oper-
ator system without the G-action. This is because the G-operator system `∞(G,B(H))
is injective as an operator system and any G-embedding V ⊂ `∞(G,B(H)) admits a
projection onto V by G-injectivity. Next, note that injectivity of the operator system
V provides us with an embedding V ⊂ B(H) admitting a projection. It follows that
V is monotone complete in the sense that every bounded set of self-adjoint elements in
V has a least upper bound. It is well known that an abelian C*-algebra is monotone
complete if and only if its spectrum is extremally disconnected (see for example [26,
Folk Theorem, p.485] or [52, Theorem 4.3]). Specialising to V = C(∂HG), we see that
the Hamana boundary is extremally disconnected.
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1.2. Furstenberg boundary
The Furstenberg boundary is of dynamical origin and was introduced in [23] in order

to study boundary theory of harmonic functions on connected Lie groups and develop
a strategy for proving superrigidty of their lattices prior to work of Margulis. In [24],
Glasner provided an excellent account of the Furstenberg boundary, and Ozawa pre-
pared instructive lecture notes addressing the topic [48]. Yet another exposition of the
Furstenberg boundary seems hence redundant, so we focus our discussion on making
its relation to the Hamana boundary as transparent as possible.

In the remainder of this piece, we will identify a compact space X with a subset of
the convex set of Borel probability measures P(X) identifying a point with its Dirac
measure: x 7→ δx.

Definition 20 ([23, Definition 4.1]). — Let X be a compact G-space.
– X is strongly proximal if for every probability measure µ ∈ P(X) there is a net
of group elements (gi)i in G and some x ∈ X such that giµ → δx in the weak-∗
topology.

– X is a G-boundary if it is minimal and strongly proximal.
– X is Furstenberg boundary of G if it is a G-boundary and for every other G-
boundary Y there is a G-equivariant continuous map X → Y .

The existence of the Furstenberg boundary follows from a product argument involving
representatives of all boundaries. It is proved in [23, p.199], [24, p.32] and [48, p.2].

The next proposition collects different aspects of rigidity visible in the dynamical
setup. It is immediate to conclude uniqueness of the Furstenberg boundary up to
unique isomorphisms from it.

Proposition 21 ([23, Proposition 4.2]). — Let X be a strongly proximal G-space and
Y be some compact G-space.

– The image of every G-equivariant map Y → P(X) intersects X.
– If Y is minimal, the image of any G-equivariant map Y → P(X) is contained in
X and there is at most one G-equivariant map Y → X.

– If X is a boundary, the image of any G-equivariant map Y → P(X) contains X.

Proof. — Consider a G-equivariant map ϕ : Y → P(X) and pick y0 ∈ Y . Since
X is strongly proximal, there is x ∈ X and a net (gi)i in G such that giϕ(y0) → δx.
Potentially passing to a subnet of (gi)i, compactness of Y allows to assume that giy0 → y

for some y ∈ Y . Continuity and G-equivariance then show ϕ(y) = δx. So there is some
y ∈ Y such that ϕ(y) ∈ X.

If Y is minimal we further conclude that

ϕ(Y ) = ϕ(Gy) = Gδx ⊂ X.

Moreover, if ϕ1, ϕ2 : Y → X are two G-equivariant continuous maps, then the map
y 7→ 1

2(δϕ1(y) + δϕ2(y)) ∈ P(X) must take values in X. So ϕ1 = ϕ2.
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If X is a boundary, we find that ϕ(Y ) ⊃ Gδx = X.

Translating the previous proposition into the language of operator systems, we obtain
rigidity in the sense of Definition 10 and essentiality in the sense of Definition 9. Recall
at this point that rigidity and essentiality are not equivalent in general - cf. Hamana’s
Lemma 11.

Corollary 22. — The extension of G-operator systems C ⊂ C(∂FG) is rigid and
essential.

Proof. — Proposition 7 establishes a correspondence between G-ucp map C(∂FG) →
C(Y ) and G-equivariant maps Y → P(∂FG). In particular, Proposition 21 implies that
every G-ucp endomorphism of C(∂FG) equals the identity. So C ⊂ C(∂FG) is rigid.

In order to show essentiality of C ⊂ C(∂FG), consider an arbitrary G-ucp map into
a G-operator system C(∂FG) → V . Composition with states of V provides us with a
G-equivariant affine map S(V ) → P(∂FG). Since ∂FG is a boundary, Proposition 21
says that its image contains ∂FG. Since it is affine, we conclude its surjectivity, so that
C(∂FG) → V is isometric, and hence completely isometric since it is ucp. This shows
essentiality of C ⊂ C(∂FG).

The next proposition puts the notion of G-boundaries into the context of operator
systems, when combined with Proposition 16.

Proposition 23 ([24, Section III.2]). — A compact G-space X is a boundary if and
only if the action Gy P(X) is irreducible.

Proof. — Assume that X is a G-boundary and let µ ∈ P(X). By strong proximality,
Gµ ∩X 6= ∅ so that minimality implies Gµ ⊃ X. The Krein-Milman theorem implies

convGµ ⊃ convX = P(X),

which proves that Gy P(X) is irreducible.
Assume now that G y P(X) is irreducible. Let µ ∈ P(X). Since convGµ = P(X)

and X is the set of extreme points in P(X), Milman’s converse to the Krein-Milman
theorem (see e.g. [47, Proposition 5.26]) implies that X ⊂ Gµ. Since µ was arbitrary,
it follows that Gy X is minimal and strongly proximal.

One can now establish that the Hamana and the Furstenberg boundary are the same.
This is formulated in the next theorem, whose statement can be already found without
proof as Remark 4 in [30].

Theorem 24 ([30, Remark 4] and [37, Theorem 3.11]). — There is a unique isomor-
phism of compact G-spaces ∂HG ∼= ∂FG.
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Proof. — Combining the characterisation of boundaries from Propositions 23 with the
statement of Proposition 16, we see that the Hamana boundary ∂HG is a boundary in
the sense of Definition 20. Hence, there is a G-equivariant map ∂FG → ∂HG, which
dualises to a *-homomorphism C(∂HG)→ C(∂FG). In the other direction, injectivity of
C(∂HG) applied to the inclusion C ⊂ C(∂FG) and the map C ↪→ C(∂HG) provides a G-
ucp map C(∂FG)→ C(∂HG). The latter translates by Proposition 7 to a G-equivariant
map ∂HG → P(∂FG), whose image lies in ∂FG by Proposition 21. This means that
C(∂FG) → C(∂HG) is a *-homomorphism. Applying rigidity of C(∂HG) (Proposi-
tion 11) and C(∂FG) (Corollary 22), respectively, we conclude that the constructed
*-homomorphisms are inverses of each other. Uniqueness of the induced isomorphism
∂HG ∼= ∂FG follows from Proposition 21.

The following proposition provides a tool to produce many more maps from G-
operator systems than injectivity of G-operator systems alone would allow. This is
one of the most useful observations made in the dynamical setting.

Proposition 25 (Furstenberg, cf. [24, Chapter III, Theorem 2.3])
Let G y C be an irreducible action on a compact convex set and denote by ex(C)

the closure of the extremal points of C. Then ex(C) is a G-boundary.

Although we showed in Theorem 24 that the Furstenberg boundary is isomorphic
with the Hamana boundary, one statement that does not immediately become clear is
why C(∂FG) is an injective G-operator system. It is hence instructive to present the
direct proof of this fact provided by Ozawa in Theorem 6 of [48].

Proposition 26. — C(∂FG) is a G-injective operator system.

Proof. — Choosing any µ ∈ P(∂FG) we obtain the Poisson map Pµ : C(∂FG)→ `∞(G)
defined by Pµ(f)(g) =

∫
∂FG

f(gx)dµ(x), which is G-equivariant, unital and positive,
hence G-ucp, because `∞(G) is abelian. Further, Proposition 25 allows us to find a G-
boundary inside S(`∞(G)) and hence a map ∂FG→ S(`∞(G)), which by Proposition 7
corresponds to a G-ucp map Φ : `∞(G) → C(∂FG). By rigidity of the Furstenberg
boundary (Proposition 22), we find Φ ◦ Pµ = idC(∂FG). It follows that Pµ is isometric
onto its image and Pµ ◦ Φ is a projection from `∞(G) onto this image. Since `∞(G) is
G-injective by the Hahn-Banach theorem, it follows that C(∂FG) is injective too.

2. DYNAMICAL CHARACTERISATION OF C*-SIMPLICITY

In this section we provide proofs for the main characterisation of C*-simplicity stated
as [37, Theorem 1.5] by Kalantar-Kennedy and as [6, Theorem 3.1] by Breuillard-
Kalantar-Kennedy-Ozawa. While [37] used an operator system perspective, and [6]
provided a partially topological dynamical proof, the proof presented here establishes
a direct link between topological dynamics and representation theory, without any
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operator algebraic techniques. We thank Matthew Kennedy for allowing us to present
these results which are based on joint conversations.

Let us begin with the representation theoretic reformulation of C*-simplicity. Note
that the following characterisation of weak containment in terms of approximation of
matrix coefficients allows to make norm estimates in the same situations where C*-
simplicity does. An excellent reference for weak containment is [5, Appendix F]. Recall
also the left-regular representation λ : G→ U(`2G) satisfying λgδh = δgh for all g, h ∈ G.
Given a unitary representation π of G, we denote its Hilbert space by Hπ.

Definition 27. — Let G be a group and π, ρ unitary representations of G.
– We say that π is weakly contained in ρ and write π ≺ ρ, if for every vector ξ ∈ Hπ,
every ε > 0 and every finite subset F ⊂ G there are vectors η1, . . . , ηn ∈ Hρ such
that

∀g ∈ F : |〈π(g)ξ, ξ〉 −
n∑
i=1
〈ρ(g)ηi, ηi〉| < ε.

– We say that π and ρ are weakly equivalent and write π ∼ ρ, if π ≺ ρ and ρ ≺ π.
– We say that π is weakly regular if π ≺ λ.

Theorem 28 ([20, Theorem 1.2]). — A group G is C*-simple if and only if every
weakly regular unitary representation of G is weakly equivalent to its regular represen-
tation.

The main link between dynamics and representation theory is made by the Koopman
representation. We will not need any theory about Koopman representations, but
want to point out for the expert that since we study boundary action in the sense
of Definition 20, we typically consider non-singular actions which are not preserving
any probability measure. Recall that an action on a non-trivial σ-finite measure space
Gy (X, ν) is called non-singular if ν is a quasi-invariant, that is gν ∼ ν for all g ∈ G.

Definition 29. — Let (X, ν) be a non-singular G-space. Then the associated Koop-
man representation κ of G is the unique unitary representation on L2(X, ν), which
satisfies the following formula for all f ∈ C(X), x ∈ X and g ∈ G and for chosen
representatives of the Radon-Nikodym derivatives.

κ(g)f(x) = f(g−1x)
(

dgµ
dµ

)1/2

(x).

The crucial ingredient for the approach presented here is the following property of
G-boundaries singled out by Breuillard-Kalantar-Kennedy-Ozawa.

Lemma 30 ([6, Lemma 3.7]). — Let G be a non-trivial group and X a G-boundary.
Then for every non-empty open subset U ⊂ X and ε > 0, there is a finite subset
F ⊂ G \ {e} such that for every probability measure µ on ∂FG, there is t ∈ F satisfying
µ(tU) > 1− ε.
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Recall that a compact G-space X is topological free, if the fixed points in X of every
non-trivial group element in G are nowhere dense. Equivalently, for every finite subset
F ⊂ G and every non-empty open subset U ⊂ X there is a non-empty open subset
V ⊂ U such that the sets gV for g ∈ F are pairwise disjoint. The next theorem clarifies
how topological freeness translates to a property of the Koopman representation of a
boundary. Its proof essentially follows the same lines as [6, Proposition 3.5], although
its statement looks different.

Theorem 31. — Let X be a G-boundary and κ the Koopman representation associated
to some quasi-invariant measure on X. Then the following statements are equivalent.

1. X is topologically free.
2. For any unitary representation of G satisfying π ≺ κ, we have λ ≺ π.
3. λ ≺ κ.

Proof. — It is clear that 2 implies 3. Let us first assume 1 and show 2. Let π be a
unitary representation of G satisfying π ≺ κ. We have to show that λ ≺ π. Let F ⊂ G

be a finite subset and ε > 0. It suffices to find a vector ξ ∈ Hπ such that
∀g ∈ F : |δe,g − 〈π(g)ξ, ξ〉〉| < ε.

Let U ⊂ X be an open subset such that gU ∩ U = ∅ for all g ∈ F \ {e}. Let E ⊂ G

be a finite subset such that for every probability measure µ on X there is some t ∈ E
such that µ(tU) > 1 − ε2 (cf. [6, Lemma 3.7]). Let ξ0 ∈ Hπ be a unit vector. Denote
by ν the quasi-invariant measure with respect to which κ is constructed. Since π ≺ κ,
there are η1, . . . , ηn ∈ L2(X, ν) such that

∀g ∈
⋃
t∈E

tF t−1 : |〈π(g)ξ0, ξ0〉 −
m∑
i=1
〈κ(g)ηi, ηi〉| < ε.

Without loss of generality, we may assume that∑n
i=1 ‖ηi‖2

2 = 1. Then dµ = ∑m
i=1 |ηi|2dν

defines a probability measure on X and there is t ∈ E such that µ(tU) > 1− ε2.
For all g ∈ F \ {e} the fact that gU ∩ U = ∅ implies

〈κ(t)κ(g)κ(t)∗1tUηi,1tUηi〉 = 〈κ(g)1Uκ(t)∗ηi,1Uκ(t)∗ηi〉 = 0.
Further for g ∈ F \ {e}, the Cauchy-Schwarz inequality shows that

|
n∑
i=1
〈κ(t)κ(g)κ(t)∗ηi,1tUcηi〉|2 ≤

(
n∑
i=1
‖ηi‖2

2

)
µ(tU c) ≤ ε2,

and similarly

|
n∑
i=1
〈κ(t)κ(g)κ(t)∗1tUcηi,1tUηi〉|2 ≤ µ(tU c)

(
n∑
i=1
‖1tUηi‖2

2

)
≤ ε2.

We put ξ = π(t)∗ξ0 and obtain for g ∈ F \ {e}

|〈π(g)ξ, ξ〉| ≤ |〈π(tgt−1)ξ0, ξ0〉 −
n∑
i=1
〈κ(tgt−1ηi, ηi〉|+ |

n∑
i=1
〈κ(tgt−1)ηi, ηi〉| ≤ 3ε,

while |〈π(e)ξ, ξ〉| = ‖ξ‖2 = 1 holds. This shows λ ≺ π and thus proves 2.
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Let us now assume 3 and prove 1. In other words, assuming λ ≺ κ, we will show
that G y X is topologically free. Take g ∈ G that admits a non-trivial open subset
U ⊂ FixX(g). We have to show that g is trivial. To this end let, t1, . . . , tk ∈ G be
elements such that for every probability measure µ ∈ P(X) there is some t ∈ {t1, . . . , tk}
satisfying µ(tU) > 8/9. Put F = {t1gt−1

1 , . . . , tkgt
−1
k } ∪ {e} and let ξ1, . . . , ξn ∈ L2(X)

be such that

∀f ∈ F : |〈δe,f −
n∑
i=1
〈κ(f)ξi, ξi〉| <

1
3.

Without loss of generality we may assume that ∑n
i=1 ‖ξi‖2

2 = 1. Then dµ = ∑n
i=1 |ξi|2dν

defines a probability measure µ ∈ P(X), where ν denotes the quasi-invariant measure
from which κ is constructed.

Let t ∈ {t1, . . . , tk} be such that µ(tU) > 8/9. Then the fact that U ⊂ FixX(g)
implies∣∣∣∣∣

n∑
i=1
〈κ(t)κ(g)κ(t)∗ξi, ξi〉

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1
〈κ(t)κ(g)κ(t)∗(1tU + 1tUc)ξi, ξi〉

∣∣∣∣∣
=
∣∣∣∣∣µ(tU) +

n∑
i=1
〈κ(t)κ(g)κ(t)∗1tUcξi, ξi〉

∣∣∣∣∣
≥ 8

9 −
(

n∑
i=1
‖κ(g)κ(t)∗1tUcξi‖2

2

)1/2 ( n∑
i=1
‖κ(t)∗ξi‖2

2

)1/2

≥ 8
9 −

1
3.

Since t−1gt ∈ F , this implies t−1gt = e and hence g = e.

We can now provide a purely dynamical proof of [37, Theorem 1.5] and [6, Theorem
3.1], respectively. The formulation we adopt for the following theorem appeared already
as [6, Proposition 7.6]. It is interesting that at no point in the proof do we have to
refer to operator algebraic notions, and instead work directly with the characterisation
of C*-simplicity provided by Theorem 28.

Theorem 32. — Let G be a group and X a G-boundary with some amenable point
stabiliser. Then G is C*-simple if and only if X is topologically free.

Proof. — Assume that X is topologically free and denote by κ the Koopman represen-
tation of X with respect to some quasi-invariant measure. Then λ ≺ κ by Theorem 31
so that π ≺ λ implies π ≺ κ. Another application of Theorem 31 shows that λ ≺ π.
This proves C*-simplicity of G.

Assume now that G is C*-simple and take x ∈ X with amenable stabiliser. Since
Gx is amenable, it follows that λG/Gx ≺ λ (see e.g. Theorem G.3.2., Theorem F.3.5
and Example E.1.8 (ii) in [5]). So C*-simplicity implies λ ∼ λG/Gx ≺ κ, which in turn
implies topological freeness of X by Theorem 31.
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Pointing out the limits of the operator algebra free approach presented in this section,
we are not aware of a proof for the following statement that does not use operator
algebraic techniques.

Theorem 33 ([6, Proposition 7.8]). — Assume that G is a discrete group with a G-
boundary X such that there is x ∈ X with Gx C*-simple. Then G is C*-simple.

3. THE UNIQUE TRACE PROPERTY

Recall that a group G has the unique trace property, if C∗red(G) has a unique tracial
state. Note that the formula τ(ug) = δg,e defines at least one such tracial state. In
this section we provide a proof that G has the unique trace property if and only if its
amenable radical is trivial, following the presentation of [6]. Drawing the analogy with
Section 2, we also point out a representation theoretic characterisation of the unique
trace property and ask for a proof relating this to triviality of the amenable radical
without passing through operator algebras.

Theorem 34 ([6, Theorem 4.1]). — Every tracial state on C∗red(G) factors through
the natural conditional expectation E : C∗red(G) → C∗red(R(G)), which satisfies E(ug) =
1R(g)ug for all g ∈ G. In particular, the following statements are equivalent for a group
G.

– G has the unique trace property.
– The amenable radical of G is trivial.

Proof. — Assume that G has the unique trace property. Denote by R the amenable rad-
ical of G. Since R is amenable we obtain a well-defined *-homomorphism ε : C∗red(R)→
C satisfying ε(ug) = 1 for all g ∈ R. Note that ε is a trace on C∗red(R). Since R is
normal, the composition ε ◦E with the natural conditional expectation remains tracial.
By the unique trace property we find τ = ε ◦ E and hence R = {e}.

Assume now that the amenable radical of G is trivial. Let ϕ be some tracial
state, which we can consider as a G-ucp map ϕ : C∗red(G) → C(∂FG). Denote by
ϕ̃ : C(∂FG) ored G → C(∂FG) some G-ucp extension, which exists by G-injectivity of
C(∂FG) as verified in Proposition 26. Restricting ϕ̃ to C(∂FG) we obtain a G-ucp endo-
morphism which must equal the identity map by rigidity of C(∂FG) shown in Corollary
22. The theory of multiplicative domains [7, Proposition 1.5.7] then shows that ϕ̃ is
C(∂FG)-bimodular. So we obtain for arbitrary f ∈ C(∂FG) and g ∈ G that

τ(ug)f = ϕ̃(ug)f = ϕ̃(ugf) = ϕ̃(f(g−1·)ug) = τ(ug)f(g−1·).

We can now invoke Furman’s Proposition 18 saying that the kernel of the action G y
∂FG is the amenable radical of G. So for g ∈ G\R(G) there is some x ∈ ∂FG satisfying
gx 6= x. Taking f ∈ C(∂FG) some function such that f(x) = 1 and f(g−1x) = 0, then
τ(ug) = τ(ug)f(x) = τ(ug)f(g−1x) = 0 follows.
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The following folklore representation theoretic characterisation of the unique trace
property provides an analogue of Fell’s Theorem 28. It would be interesting to find
a proof of Theorem 34 that directly relates this characterisation to triviality of the
amenable radical. Recall that two unitary representations π1, π2 of a group G are
quasi-equivalent if there is a cardinal κ such that π⊕κ1

∼= π⊕κ2 . Further, we call a
representation finite if it is generated by tracial vectors, that is vectors ξ whose matrix
coefficient 〈·ξ, ξ〉 defines a conjugation invariant function on G. Note that every finite
dimensional representation is finite, but that the latter class is larger, containing the
left-regular representation in particular.

In the proof of the next proposition we are going to employ the GNS-representation
associated with a state on a C*-algebra, which is explained in [45][Sections 3.4 and 5.1].
It is noteworthy that the GNS-representation of the natural trace on C∗red(G) is unitary
equivalent with the left-regular representation of a discrete group G.

Proposition 35. — The following statements are equivalent for a group G.
1. G has the unique trace property.
2. Every finite, weakly regular unitary representation is quasi-equivalent to λ.

Proof. — Assume that C∗red(G) has a unique trace. Let π ≺ λ be a finite unitary
representation. We may assume without loss of generality that π is cyclic with tracial
cyclic unit vector ξ. By linearity and continuity, the state a 7→ 〈aξ, ξ〉 on C∗π(G) is
tracial. Since π ≺ λ, there is a *-homomorphism C∗red(G)→ C∗π(G) and we thus obtain
a tracial state ϕξ on C∗red(G). Then ϕξ = τ by the unique trace property. Applying the
GNS-theorem, we find that π ∼= πϕξ = πτ ∼= λ.

Now assume the every finite weakly regular unitary representation is quasi-equivalent
to λ. We first observe that the group von Neumann algebra of G is a factor and hence
has a unique trace. Let ϕ be any tracial state on C∗red(G). Denote by π its GNS-
representation, which is quasi-equivalent to λ by our assumption, so that π(C∗red(G))′′ ∼=
LG preserving the inclusion of C∗red(G). Since ϕ extends to a trace on the former von
Neumann algebra, while the latter has a unique trace, it follows that ϕ = τ .

4. EXTENSIONS AND EXAMPLES OF C*-SIMPLE GROUPS

An important contribution of [6] was the systematic solution of virtually all open
problems on C*-simplicity of discrete groups. We do not have anything to add to the
elegant proofs presented in [6], which naturally make use of the dynamical characteri-
sation of C*-simplicity provided by Theorem 32.

The first result to mention solved the longstanding open problem whether the exten-
sion of C*-simple groups remains C*-simple. The answer interestingly is yes. While
the proof of [6, Theorem 1.4] constructs a topological free boundary action from the
assumptions, we point out that stability of C*-simplicity under extensions is a corollary
of Theorem 32.
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Theorem 36 ([6, Theorem 1.4]). — Let G be a group and N E G a normal sub-
group. Then G is C*-simple if and only if N and ZG(N) are C*-simple. In particular,
C*-simplicity is closed under extensions.

Proof that C*-simplicity is closed under extensions. — Let G be a group with C*-
simple normal subgroup N E G and C*-simple quotient Q = G/N . Consider the
Furstenberg boundary ∂FQ as a G-space. Since Q is C*-simple, its action on ∂FQ

is free by Theorem 32 and the fact that ∂FQ is extremally disconnected (cf. [6,
Proposition 2.4]). So Gy ∂FQ is a G-boundary whose point stabilisers are equal to N
and hence C*-simple. An application of Theorem 33 finishes the proof.

In another direction, [6] gave a series of criteria for groups to be C*-simple, recovering
basically all previously known classes of examples. In view of Problem 1 about the
relation between C*-simplicity and triviality of the amenable radical, we choose the
following form to summarise these results and refer to [6] more details.

Theorem 37 ([6, Theorems 1.5, 1.6 and 1.7]). — A group G with trivial amenable
radical is C*-simple if one of the following conditions holds.

– G is linear.
– Bounded cohomology of G does not vanish.
– There is at least one non-trivial `2-Betti number of G.
– G has at most countably many amenable subgroups.

5. RECONNECTING TO ORIGINAL IDEAS. WORK OF HAAGERUP
AND KENNEDY

5.1. The Dixmier property and Powers averaging

A unital C*-algebra A is said to have the Dixmier property if for any a ∈ A the
convex norm closure of {uau∗ | u ∈ A unitary} intersects the centre of A non-trivially.
This property was introduced in [16] in the context of von Neumann algebras and it
is not difficult to show that a tracial, unital C*-algebra with trivial centre and the
Dixmier property must be simple and has exactly one trace. Vice versa it was shown
in [29, Corollaire] (see also [1] for a more recent generalisation) that a simple, unital
C*-algebra with at most one trace has the Dixmier property.

For unital C*-algebras with trace the only scalar in conv{uau∗ | u ∈ A unitary} can
be the value of the trace on a. This allows us to rewrite the Dixmier property as follows:
a unital C*-algebra A with trace τ and trivial centre has the Dixmier property if and
only if for every a ∈ A there is a sequence of unitaries (ui)i∈N in U(A) such that∥∥∥∥∥ 1

n

n∑
i=1

uiau
∗
i − τ(a)1

∥∥∥∥∥→ 0.
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With this reformulation in mind, we say that a group G satisfies the Powers averaging
property [39, Definition 1.3] if for every element a ∈ C∗red(G) there is a sequence of
group elements (gi)i∈N in G such that∥∥∥∥∥ 1

n

n∑
i=1

ugiau
∗
gi
− τ(a)1

∥∥∥∥∥→ 0.

Using the original formulation of the Dixmier property, the last statement is equiva-
lent to the convex norm closure of {ugau∗g | g ∈ G} intersecting the scalars of C∗red(G)
non-trivially. Using this terminology, Powers’ achievement was to single out a combina-
torial way to ensure the Powers averaging property. After the results of [6], it appears
natural to reconnect C*-simplicity to this original idea. Both Kennedy and Haagerup
approached this problem independently, obtaining essentially equivalent but differently
presented results. Note the resemblance with the proof of Theorem 34.

Theorem 38 ([39, Theorem 1.4] and [27, Theorem 5.3]). — The following statements
are equivalent for a group G with natural trace τ on C∗red(G).

1. G is C*-simple.
2. The unique G-ucp map C∗red(G)→ C(∂FG) is a 7→ τ(a)1.
3. For every state ϕ ∈ C∗red(G)∗ we have τ ∈ convw∗{g · ϕ | g ∈ G}.
4. G has Powers averaging property.

Proof. — Assume that G is C*-simple and let Φ : C∗red(G) → C(∂FG) be any G-
ucp map. Since C(∂FG) is G-injective by Proposition 26, it extends to a G-ucp map
Ψ : C(∂FG) or G→ C(∂FG). Restricting Ψ to C(∂FG) and applying rigidity from Corol-
lary 22, we find that Ψ|C(∂FG) = idC(∂FG). So the theory of multiplicative domains [7,
Proposition 1.5.7] shows that Ψ is C(∂FG)-bimodular. As in the proof of Theorem 34, we
conclude that Φ(ug)f = Φ(ug)f(g−1·) for any f ∈ C(∂FG). For every x ∈ ∂FG \Fix(g),
there is some function f ∈ C(∂FG) such that f(x) = 1 and f(g−1x) = 0. Hence

Φ(ug)(x) = Φ(ug)(x)f(x) = Φ(ug)(x)f(g−1x) = 0.

Since G is C*-simple, Theorem 32 says that G y ∂FG is topologically free, meaning
that ∂FG \ Fix∂FG(g) is dense in ∂FG. So Φ(ug) = 0 = τ(ug). This proves 2.

Assume 2 and let ϕ ∈ C∗red(G)∗ be a state. Then C = convw∗{g · ϕ | g ∈ G} is a
compact convex G-space, so that it contains a G-boundary B ⊂ C by Proposition 25.
Universality of the Furstenberg boundary provides us with a G-equivariant map ∂FG→
B, which then translates by Proposition 7 to a G-ucp map Φ : C∗red(G)→ C(∂FG). By
2 we have Ψ(a) = τ(a)1 for all a ∈ C∗red(G), which translates to B = {τ}, proving 3.

The implication 3 =⇒ 4 is an easy application of the Hahn-Banach separation
theorem, while the implication 4 =⇒ 1 follows from the discussion about the Dixmier
property.

Note that the last result can be interpreted as saying that any non-trivial boundary
action in the state space of the reduced group C*-algebra, already witnesses failure of
C*-simplicity.
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Let us mention the following characterisation of triviality of the amenable radical,
highlighting the subtle difference to C*-simplicity.

Theorem 39 ([27, Theorem 5.2 (iv)]). — A discrete group G has trivial amenable
radical if and only if for every h ∈ G we have that conv{uguhu∗g | g ∈ G} intersects the
scalars.

5.2. The amenable radical
While [6] showed that a group with trivial amenable radical has the unique trace

property, examples provided by le Boudec in [42] showed that C*-simplicity cannot be
concluded in general, as there are examples of groups with trivial amenable radical that
are not C*-simple. It thus became natural to investigate to which extent the long hoped
for equivalence between C*-simplicity and the triviality of the amenable radical could
be saved. This was achieved by Kennedy in [39] replacing normal subgroups by the
appropriate dynamical notion, so called uniformly recurrent subgroups [25] introduced
by Glasner-Weiss.

Definition 40 ([25, Defintion 0.1]). — Let G be a group.
– The Chabauty space S(G) is the compact G-space obtained from the set of all its
subgroups equipped with the topology inherited from the power set 2G and the action
of G by conjugation.

– A minimal G-invariant closed subset of S(G) is called a uniformly recurrent sub-
group (URS) of G.

– A uniformly recurrent subgroup of G is amenable if all its elements are amenable.

The topology of the Chabauty space S(G) can be characterised by convergence of
nets: a net of subgroups (Hi)i∈I converges to H, if for every g ∈ G we have g ∈ Hi

ultimately if and only if g ∈ H.
Let us state an observation, providing a dynamical replacement of the amenable

radical.

Lemma 41 (Cf. [39, Proposition 3.2 and Theorem 4.1]). — For any discrete group G,
the G-set {Gx | x ∈ ∂FG} ⊂ S(G) is an amenable uniformly recurrent subgroup of G.

Proof. — Consider the map ∂FG→ S(G) : x 7→ Gx. It is G-equivariant and continuous
since for every g ∈ G the set FixX(g) is clopen, thanks to the fact that ∂FG is extremally
disconnected. The image of a minimal compact G-space under a continuous map has
the same properties, so it follows that {Gx | x ∈ ∂FG} is a URS.

The URS defined in the previous statement is called the Furstenberg URS of G. It
is the dynamical analogue of the amenable radical.

Theorem 42 ([39, Theorem 1.2]). — For a group G the following statements are
equivalent.

– G is C*-simple.
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– G has no non-trivial amenable uniform recurrent subgroups.
– The Furstenberg URS of G is trivial.

If the amenable radical is the maximal amenable normal subgroup, one might wonder
how the Furstenberg URS can be characterised in an algebraic way. In this direction,
the proof of Theorem 6.2 in [6] and work of Kennedy [39, Section 5] can be interesting
starting points.

6. DEVELOPMENTS FOLLOWING
BREUILLARD-KALANTAR-KENNEDY-OZAWA

The presented work on C*-simplicity gave rise to a wave of results on simplicity or
more generally the ideal structure of C*-algebras associated with groups. In this section
we intend to give a concise overview of these developments pointing out current and
future directions of research. Above all, it should be noted that the methods developed
in [37] and [6] are of equal importance as the results.

C*-simplicity of non-discrete groups : Already in [12, page 232, Conjecture]
speculations about the existence of non-discrete C*-simple groups were raised and
the problem to find one was expressed in [13, Question 5]. This question was
made more precise in [8, Problem 8.1], asking to characterise C*-simple groups
“in terms of [their] Furstenberg boundary”. While candidates for non-discrete
C*-simple groups considered in [12, Conjecture, page 232] are not C*-simple due
to the fact that every C*-simple group must be totally disconnected [51, Theo-
rem A], Suzuki provided in [55] some examples of non-discrete C*-simple groups,
whose construction is based on elementary considerations only using Powers’ orig-
inal work [49]. It is to be noted that it is currently unclear whether or not the
examples of non-discrete C*-simple groups provided in [51, Theorem B] are ac-
tually valid, owing to a gap in Lemma 5.1 pointed out by Suzuki. The natural
generalisation of the unique trace property for non-discrete groups asks whether
the reduced group C*-algebra of a unimodular locally compact group admits the
Plancherel trace as its unique (unbounded) trace up to scaling. Suzuki’s examples
do have this property. In another direction, [21] investigated which reduced group
C*-algebras admit bounded traces, and [40] solved this problem completely stating
that C∗red(G) admits a tracial state if and only if the amenable radical of G is open.

Ideal structure of crossed products : In [15], de la Harpe-Skandalis showed
that if G is a Powers group, and A is a G-C*-algebra that does not admit any
non-trivial G-invariant ideals, then the crossed product C*-algebra A ored G is
simple. Clearly the condition on A (called G-simplicity) is necessary. The condi-
tion on G can be weakend to C*-simplicity as [6, Theorem 7.1] shows. Methods
developed in the setting of C*-simplicity, notably from [39], do not stop to apply
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here, and results on the ideal structure of crossed products by not-necessarily
C*-simple groups are obtained in [38, 41]. See also [19, Section 6.3].

Characterisations of C*-simplicity through stationary traces : In Section
5.2 it was shown that the gap between uniqueness of a trace and C*-simplicity can
be overcome by a uniqueness result for G-ucp maps into the Furstenberg bound-
ary. In another direcrtion [33] investigated the possibility to relax the traciality
condition and studied more generally stationary states on group C*-algebras to
obtain another characterisation of C*-simplicity.

Twisted group C*-algebras : Twisted group C*-algebras and twisted crossed
products play an important role in the understanding of unitary representation
theory, being linked through the notion of projective representation [3]. Although
they appear in different disguise, the study of their simplicity even predates
Powers’ article [53]. Continuing work that had been done in between and possibly
inspired by the recent success of C*-simplicity, [4] investigates simplicity and
the unique trace property for twisted group C*-algebras. However, methods and
ideas from [37, 6] could not yet be applied, leaving the possibility for further
development.

Thompson’s groups : The question whether Thompson’s group F is amenable or
not, is very well-known in the group theory community. Surprisingly, it is possi-
ble to exhibit a sharp dichotomy between amenability and C*-simplicity in this
context: after [28, Theorem 5.5] showed that C*-simplicity of Thompson’s group
T implies non-amenability of Thompson’s group F, methods from [6] and [39]
were applied to groups of homeomorphisms obtaining not only the converse to
Haagerup-Olesen, but even the dichotomy that F is either amenable or C*-simple
[43, Theorem 1.7].

Strong amenability : The notion of strong amenability was introduced by Glasner
in [24, Section II.3]. Being formulated in terms of proximal actions, it dynami-
cally bears similarity to amenability characterised by triviality of the Furstenberg
boundary. Seemingly independent from the developments on C*-simplicity, [36]
characterised strongly amenable groups as FC-hypercentral groups (those groups
that do not have any icc quotient) and [35] went on to solve the longstanding open
problem to characterise finitely generated Choquet-Deny groups, which are by
definition those finitely generated groups all of whose Poisson boundaries vanish.
The power of dynamical methods and closeness to the operator algebraic setting
are stunning similarities to the developments in C*-simplicity.
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