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THE RIEMANN ZETA FUNCTION IN SHORT INTERVALS
[after Najnudel, and Arguin, Belius, Bourgade, Radziwi l l and

Soundararajan]

by Adam J Harper

INTRODUCTION

The Riemann zeta function ζ(s) is one of the most important and fascinating functions
in mathematics. When the complex number s has <(s) > 1, we have

ζ(s) =
∞∑
n=1

1
ns

=
∏

primes p

(
1− 1

ps

)−1
,

and already from these equivalent expressions we see some of the key themes that
dominate the study of ζ(s).

Firstly, since ζ(s) is given by a Dirichlet series over all natural numbers n, without
any difficult number theoretic coefficients, we can hope to use general analytic methods
to obtain information about ζ(s). For example, one could hope to approximate ∑∞n=1

1
ns

or its partial sums by an integral. In this way, one can extend the definition of ζ(s)
to all <(s) > 0, and with more work to the entire complex plane. It turns out that
this analytic continuation of ζ(s) is meromorphic, with only a simple pole at s = 1.
Furthermore, when <(s) > 0 the zeta function is the sum ∑

n≤X
1
ns

plus some easily
understood other terms, for suitable X = X(s).

Secondly, since ζ(s) is given by an Euler product over all primes p, we can hope to use
results about the zeta function to deduce things about the distribution of primes. One
can also go in the reverse direction, and hope to put in information about the primes to
deduce things about the zeta function (from which, perhaps, we will later deduce other
number theoretic information that we didn’t have before). In this article we will discuss
various results of this nature.

Thirdly, note that the Euler product is absolutely convergent when <(s) > 1, and
none of the individual factors (1− 1

ps
)−1 vanish, so we have ζ(s) 6= 0 when <(s) > 1. It is

well known that the zeros of the zeta function encode number theoretic information, and
here one can glimpse why— if one knows that ζ(s) doesn’t vanish in a certain part of
the complex plane, this suggests that something like the Euler product formula persists
there, which implies something about the regularity of the primes. Again there is a kind
of duality, since not only does the non-vanishing of zeta imply things about primes and
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products, but our methods for proving non-vanishing tend to involve establishing the
influence of some kind of product formula in the region under study.

The most interesting subset of the complex plane on which to study ζ(s) is the critical
line <(s) = 1/2. Thus the Riemann Hypothesis (RH), possibly the most famous unsolved
problem in pure mathematics, conjectures that if ζ(s) = 0 then either s = −2,−4,−6, . . .
(the so-called trivial zeros), or else <(s) = 1/2. This is known to be equivalent to the
estimate ∣∣∣∣#{p ≤ x : p prime} −

∫ x

2

dt

log t

∣∣∣∣� x1/2 log x

for the counting function of the primes (RH holds if and only if this estimate holds for
all large x). For any fixed σ > 1/2, it is believed (and to some extent known) that the
values taken by ζ(σ+ it) have a rather simple behaviour: for example, ζ(σ+ it) can only
attain unusually large values as a result of “conspiracies” in the behaviour of p−it for
small primes p. As we shall discuss extensively later, the situation on the critical line is
very different. All the appearances of 1/2 here reflect the fact that in a random process,
the typical size of fluctuations is like the square root of the variance. The extent to
which ζ(s) behaves like various random objects, especially random objects related to
the Euler product, is another key theme that we are going to explore.

Our goal in this paper is to survey some recent work on the behaviour of ζ(1/2 + it)
in short intervals of t. In particular, we shall describe a conjecture of Fyodorov, Hiary
and Keating [10, 11] about the size of max0≤h≤1 |ζ(1/2 + it + ih)| as t varies, and we
shall explain some results that have been proved in the direction of this conjecture by
Najnudel [15] and by Arguin–Belius–Bourgade–Radziwi l l–Soundararajan [2].

This paper is organised as follows. Firstly we shall set out some Basic Principles that
will guide our thinking and arguments about the zeta function. Then, to illustrate the
use of these principles and to compare with the later case of max0≤h≤1 |ζ(1/2 + it+ ih)|,
we shall describe what is known about the value distribution of ζ(1/2 + it) (without any
maximum) and what is known about the “long range” maximum maxT≤t≤2T |ζ(1/2 +
it)|. Next we shall introduce and motivate the conjecture of Fyodorov–Hiary–Keating,
primarily using our Basic Principles rather than the random matrix theory/statistical
mechanics arguments originally considered by those authors (although we shall mention
those briefly). And then we shall discuss the statements and proofs of the results of
Najnudel and of Arguin–Belius–Bourgade–Radziwi l l–Soundararajan, again seeing how
these correspond to very nice implementations of those principles.

1. BASIC PRINCIPLES

One can build up a great deal of understanding of the zeta function beginning from
the following idea, which we first state in a heuristic way.
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Principle 1.1. — As t varies, the numbers (p−it)p prime “behave like” a sequence of
independent random variables, each distributed uniformly on the complex unit circle.

It is clear that for any given p, as t varies over an interval the quantity p−it = e−it log p

rotates around the complex unit circle at “speed” log p, behaving like a uniform random
variable. Thus the interesting assertion in Principle 1.1 is that we should think of the
p−it as being independent. That is because the primes are multiplicatively independent,
or equivalently the speeds log p are linearly independent over the rationals. Both of
these statements are just ways of expressing the uniqueness of prime factorisation. So as
each of the p−it rotate around, there are no fixed relations between any combinations of
them (unlike if we considered 2−it, 3−it, 6−it, say, for which always 6−it = 2−it3−it) and
so, heuristically, they shouldn’t “see one another’s behaviour” too much.

What rigorous statements can we make that would correspond to Principle 1.1? The
following result, although easily proved, turns out to be a very powerful tool.

Lemma 1.2. — Let T ≥ 1, and let p1, . . . , pk, pk+1, . . . , pl be any primes (not necessarily
distinct). Let (Xp)p prime be a sequence of independent random variables, each distributed
uniformly on the complex unit circle. Then

1
T

∫ 2T

T

k∏
j=1

p−itj

(
l∏

j=k+1
p−itj

)
dt = E

k∏
j=1

Xpj

l∏
j=k+1

Xpj +O

(
min{∏k

j=1 pj,
∏l
j=k+1 pj}

T

)
.

Proof of Lemma 1.2. — We can rewrite the integral on the left as

1
T

∫ 2T

T
exp

{
−it

( k∑
j=1

log pj −
l∑

j=k+1
log pj

)}
dt.

So if ∑k
j=1 log pj = ∑l

j=k+1 log pj then the integral is exactly 1. And since this
is equivalent (by uniqueness of prime factorisation) to saying that the (pj)lj=k+1
are just some reordering, with the same multiplicities, of the (pj)kj=1, we see that
E∏k

j=1Xpj

∏l
j=k+1Xpj = 1 in this case as well, since every Xp is paired with a conjugate

copy.
If ∑k

j=1 log pj 6=
∑l
j=k+1 log pj, then on the right some Xp is not paired with a

conjugate copy, so by independence and symmetry of the distributions of the Xp we
have E∏k

j=1Xpj

∏l
j=k+1Xpj = 0. The integral on the left may be calculated explicitly as

1
T

exp
{
−it(∑k

j=1 log pj −
∑l
j=k+1 log pj)

}
−i(∑k

j=1 log pj −
∑l
j=k+1 log pj)

2T

T

� 1

T

∣∣∣∣log
( ∏k

j=1 pj∏l

j=k+1 pj

)∣∣∣∣ .
If ∏k

j=1 pj < (3/4)∏l
j=k+1 pj or if ∏k

j=1 pj > (4/3)∏l
j=k+1 pj then the logarithmic term

here is > log 4/3� 1, so we get an acceptable error term O(1/T ). Otherwise, we can
write log

( ∏k

j=1 pj∏l

j=k+1 pj

)
= log

(
1 +

∏k

j=1 pj−
∏l

j=k+1 pj∏l

j=k+1 pj

)
and use the Taylor expansion of the

logarithm. Since we know that ∏k
j=1 pj −

∏l
j=k+1 pj 6= 0, in fact it is ≥ 1 and we get a
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lower bound � 1∏l

j=k+1 pj
from the Taylor expansion. Since we are in the case where∏k

j=1 pj and ∏l
j=k+1 pj differ at most by a multiplicative factor 4/3, this can also be

written as � 1
min{

∏k

j=1 pj ,
∏l

j=k+1 pj}
.

Lemma 1.2 implies that if we examine the t-average of some polynomial expression
in the p−it, this will be close to the corresponding average of the genuinely random Xp

provided that when we expand things out, the product of the primes involved is small
compared with T . Since one can approximate quite general functions using polynomials
(with the degree and coefficient size increasing as one looks for better approximations),
one can hope to show rigorously that the distribution of sums of the p−it is often close
to the distribution of sums of the Xp. A particular instance of this is the well known
method of moments from probability theory. For example, if P = P (T ) is some large
quantity, (ap)p prime = (ap(T ))p prime are complex numbers, and if one can show that for
each k ∈ N one has

1
T

∫ 2T

T

(
<
∑
p≤P

app
−it
)k
dt→ EN(0, 1)k as T →∞,

then it follows that the distribution of <∑p≤P app
−it converges to the standard Normal

distribution as T →∞. (Here we wrote EN(0, 1)k = (2π)−1/2 ∫∞
−∞w

ke−w
2/2dw to denote

the k-th power moment of the standard Normal distribution.) In view of the above
discussion, if the size of the ap is under control then one could hope to prove such
convergence (presuming it actually holds!) when P (T ) = T o(1), so that the error terms
in Lemma 1.2 don’t contribute too much.

Our other basic principle is the following.

Principle 1.3. — For many purposes (especially statistical questions not directly
involving the zeta zeros), for any σ ≥ 1/2 the Riemann zeta function ζ(σ + it) “behaves
like” an Euler product ∏primes p≤P (1− 1

pσ+it )−1 of “suitable” length P = P (σ, t).

As discussed in the Introduction, the reason for believing that something like Princi-
ple 1.3 could prevail is that ζ(σ + it) is equal to an Euler product when σ > 1, and if
the primes are well distributed then one expects this identity to continue to influence
the behaviour of the zeta function for smaller σ. Indeed, the Riemann Hypothesis is
the statement that it does continue to have an influence, at least to the extent that
ζ(σ + it) 6= 0 (like a finite product of non-vanishing terms) when σ > 1/2.

It is much harder to prove rigorous statements corresponding to Principle 1.3 than it
was for Principle 1.1, and we shall discuss several examples of such statements in the
sequel. One also needs to think carefully about the appropriate sense of “behaves like”
here, especially when σ = 1/2, since the Riemann zeta function does have infinitely
many zeros on the critical line which don’t reflect Euler product type behaviour. But to
fix ideas a little we state one nice result, which we will also come back to later.
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Proposition 1.4 (Radziwi l l and Soundararajan, 2017). — For all T ≤ t ≤ 2T , except
for a set whose measure is o(T ) as T →∞, we have

ζ
(

1/2 + W

log T + it
)

= (1 + o(1)) exp
{ ∑
pk≤P

1
kpk(1/2+W/ log T+it)

}
,

where the sum is over prime powers pk. Here W = (log log log T )4, and P =
T 1/(log log log T )2, and the o(1) term tends to 0 as T →∞.

The reader needn’t be too concerned about the exact choices of W and P here, and
in any event there is some flexibility in those (they are related though, as W increases
one can take P smaller). Proposition 1.4 says that ζ(s) behaves like an Euler product
(or the exponential of a prime number sum) provided one shifts away from the critical
line <(s) = 1/2 by a small amount W/ log T . As discussed earlier, such a statement
cannot hold when <(s) = 1/2 because of the zeros of the zeta function. But knowing
the result when <(s) is slightly larger is sufficient for many purposes, since one can use
derivative estimates (or more sophisticated statements of a similar character) to pass
from knowing things just off the critical line to knowing things on the critical line.

We give a brief sketch of Radziwi l l and Soundararajan’s [17] proof of Proposition 1.4.
Using a mean square calculation, one can show that for most T ≤ t ≤ 2T we have
ζ(1/2+ W

log T +it)M(1/2+ W
log T +it) = 1+o(1), where M(s) = ∑

n
c(n)
ns

and the coefficients
c(n) are a truncated version of the coefficients one gets by formally expanding the product∏

primes p(1− 1
pσ+it ). Note that one can compute such mean square averages fairly easily

using e.g. classical approximations ζ(s) ≈ ∑
n≤X

1
ns

for the zeta function, provided
the coefficients c(n) are zero when n is large (larger than T ε, say). Proposition 1.4
follows by combining this with the observation that, for most T ≤ t ≤ 2T , we have
M(1/2+ W

log T +it) = (1+o(1)) exp{−∑pk≤P
1

kpk(1/2+W/ logT+it)} (note the minus sign here),
which follows from the construction of c(n), the series expansion of the exponential, and
(importantly) the fact that ∑pk≤P

1
kpk(1/2+W/ logT+it) isn’t too large for most T ≤ t ≤ 2T .

We conclude this section with some small computations that will recur a number of
times in the sequel. Firstly we have a number theoretic calculation, which the reader
might wish to compare with our earlier discussion of the method of moments.

Lemma 1.5. — For any T ≥ 1 and any 1 ≤ x ≤ y, we have
1
T

∫ 2T

T
<

∑
x≤p≤y

1
p1/2+itdt = O

(√
y

T

)
,

1
T

∫ 2T

T

(
<

∑
x≤p≤y

1
p1/2+it

)2
dt = 1

2 log
( log y

log x

)
+O

( 1
log100(2x)

+ y2

T

)
.

Proof. — We rewrite <∑x≤p≤y
1

p1/2+it = 1
2

(∑
x≤p≤y

1
p1/2+it + ∑

x≤p≤y
1

p1/2+it

)
. The first

statement in Lemma 1.5 follows directly by combining this with Lemma 1.2. For the
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second statement, we can rewrite the left hand side as
1
4

∑
x≤p,q≤y

1
√
pq

1
T

∫ 2T

T

(
p−itq−it + p−itq−it + p−itq−it + p−itq−it

)
dt,

and using Lemma 1.2 this is the same as
1
4

∑
x≤p,q≤y

1
√
pq

(
EXpXq + EXpXq + EXpXq + EXpXq +O

(min{p, q}
T

))
.

It is easy to check that if p 6= q then by independence and symmetry all of these
expectations vanish, whereas when p = q we have EX2

p = 0 and E|Xp|2 = 1. Lemma 1.5
finally follows using the standard estimate ∑x≤p≤y

1
p

= log
(

log y
log x

)
+ O

(
1

log100(2x)

)
, say,

which follows from the Prime Number Theorem.

Lemma 1.5 tells us that the mean value of <∑p≤
√
T

1
p1/2+it (say) is very small for

large T , and the mean square (which is essentially also the variance, since the mean
is small) is ∼ (1/2) log log T . We will see the quantity log log T appear in many places
later, and this variance calculation is one of the key sources of it. Let us emphasise
that log log T → ∞ as T → ∞, whereas if one attempted a similar calculation with
<∑p≤

√
T

1
pσ+it for any fixed σ > 1/2 then the mean square would be convergent. This is

one of the key sources of difficulty and interest on the critical line, as compared with
elsewhere in the complex plane. On the other hand, log log T is a very slowly growing
function, which turns out to be key to the success of many of the arguments that we
can implement.

We also record a probabilistic calculation.

Lemma 1.6. — Let Z1, ..., Zn be independent Gaussian random variables, each having
mean zero and standard deviation σ > 0. Then for any u ≥ 0, we have

1− e−Θ
(
n e

−u2/2
1+u

)
≤ P

(
max
1≤i≤n

Zi > uσ
)
� n

e−u
2/2

1 + u
.

In particular, for any ε > 0 we have

P
(

1− ε ≤ max1≤i≤n Zi
σ
√

2 log n
≤ 1

)
→ 1 as n→∞.

Proof of Lemma 1.6. — Using the union bound, we have P(max1≤i≤n Zi > uσ) ≤∑n
i=1 P(Zi > uσ). And P(Zi > uσ) is just the probability that a N(0, 1) random

variable is > u, which is � e−u2/2

1+u . This proves the first upper bound.
To prove the lower bound, it will suffice to show that P(max1≤i≤n Zi ≤ uσ) ≤

e
−Θ
(
n e

−u2/2
1+u

)
. But by independence, this probability is equal to ∏n

i=1 P(Zi ≤ uσ). And
again, P(Zi ≤ uσ) is 1−Θ

(
e−u2/2

1+u

)
= exp

{
−Θ

(
e−u2/2

1+u

)}
, which gives the result.

For the second statement, we just note that if we take u = (1 − ε)
√

2 log n, where
ε > 0 is small and n is large, then n e

−u2/2

1+u → ∞ as n → ∞ and so P(max1≤i≤n Zi >
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uσ) ≥ 1− o(1). Similarly, if we take u =
√

2 log n then n e
−u2/2

1+u → 0 as n→∞, and so
P(max1≤i≤n Zi > uσ) = o(1).

Note that we made little use of the assumption that the Zi were Gaussian/Normal
random variables. This just gave us a rather explicit form for the tail probabilities
P(Zi > uσ) that arose in the argument. It would also be easy to replace the second
statement with something more precise, and later we shall extensively discuss the precise
asymptotics of the maxima of Gaussian random variables.

2. GENERAL LANDSCAPE OF THE VALUES OF ZETA

To set the scene for our discussion of ζ(1/2 + it) in short intervals of t, we now review
some of the key information we have (both unconditional, conditional and conjectural)
when t varies over a wide range.

Firstly one might ask about the “typical” size of ζ(1/2 + it). A natural way to make
this precise is to ask about the distribution of |ζ(1/2 + it)|, where T ≤ t ≤ 2T (say) is
chosen uniformly at random. This situation is described by a beautiful classical result
of Selberg.

Theorem 2.1 (Selberg Central Limit Theorem, 1946). — For any z ∈ R, we have
1
T

meas
{
T ≤ t ≤ 2T : log |ζ(1/2 + it)|√

(1/2) log log T
≤ z

}
→ Φ(z) as T →∞,

where Φ(z) :=
∫ z
−∞

e−w2/2
√

2π dw is the standard Normal cumulative distribution function.

Let us remark that although we will have ζ(1/2+it) = 0 (and therefore log |ζ(1/2+it)|
will be undefined) for some points T ≤ t ≤ 2T (in fact for � T log T points), since these
points form a discrete set they contribute nothing from the point of view of measure, so
are irrelevant to the statement of Theorem 2.1.

The Selberg Central Limit Theorem is the prototypical manifestation of the Basic
Principles discussed in the previous subsection. Looking at things heuristically, we have

log |ζ(1/2 + it)| = < log ζ(1/2 + it) ≈ −<
∑
p≤P

log
(

1− 1
p1/2+it

)
≈ <

∑
p≤P

1
p1/2+it ,

for “suitable” P = P (T ). Then as T ≤ t ≤ 2T varies, the terms p−it behave like
independent random variables, and so log |ζ(1/2 + it)| behaves roughly like a sum of
many independent random variables. This is exactly the situation where one expects to
have convergence in distribution to a Normal random variable. The second part of the
heuristic is rather easy to make rigorous to an acceptable level of precision in this setting,
by computing moments of the sums <∑p≤P

1
p1/2+it and showing that they converge to the

moments of a Normal distribution. The approximation log |ζ(1/2 + it)| ≈ <∑p≤P
1

p1/2+it

has traditionally been more difficult to establish rigorously. As we already discussed,
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nothing like this can hold pointwise on the critical line because the left hand side
will be undefined at some points t, so one wants to show that log |ζ(1/2 + it)| ≈
<∑p≤P

1
p1/2+it in some kind of average sense. The classical proofs of this entailed quite

complicated manipulations to work around the zeros of zeta, but recently Radziwi l l and
Soundararajan [17] have given a very neat and conceptual proof using Proposition 1.4.

Another key question is about the largest values attained by |ζ(1/2 + it)| as t varies.
Unconditionally, our best upper bounds for the size of ζ(1/2+ it) are rather weak despite
the application of some very powerful methods to the problem.

Theorem 2.2 (Bourgain, 2017). — For any ε > 0 and all large t, we have |ζ(1/2 +
it)| �ε t

13/84+ε (where the implicit constant may depend on ε).

Bourgain [7] proved this result by combining the Hardy–Littlewood approximation
ζ(1/2 + it) ≈ ∑n≤t

1
n1/2+it , exponential sum methods of Bombieri–Iwaniec, and progress

in the theory of “decoupling” from harmonic analysis. For comparison, general complex
analysis arguments (“convexity”) can prove a bound �ε t

1/4+ε, and long ago Hardy and
Littlewood proved the bound�ε t

1/6+ε. Bourgain’s exponent 13/84 ≈ 0.155 is the latest
in a long line of improvements. Meanwhile the classical Lindelöf Hypothesis (the truth
of which follows from the Riemann Hypothesis) conjectures that |ζ(1/2 + it)| �ε t

ε for
any ε > 0 and all large t.

The bound tε proposed by the Lindelöf Hypothesis is still rather soft, so what upper
bound should we really expect, in other words what is the true size of maxT≤t≤2T |ζ(1/2+
it)|? There isn’t a universal consensus about this, but the following results set some
limits on where the truth can lie.

Theorem 2.3 (Littlewood, 1924). — If the Riemann Hypothesis is true, then for all
large t we have

|ζ(1/2 + it)| ≤ exp
{
C

log t
log log t

}
,

for a certain absolute constant C > 0.

Theorem 2.4 (Bondarenko and Seip, 2018). — For all large T , we have

max
1≤t≤T

|ζ(1/2 + it)| ≥ exp
{

(1 + o(1))
√

log T log log log T
log log T

}
,

where the o(1) term tends to 0 as T →∞.

Apart from a sequence of improvements to the value of C, Littlewood’s [14] result
in Theorem 2.3 hasn’t been improved for almost a century. Theorem 2.4 is a recent
breakthrough of Bondarenko and Seip [5, 6], improving on earlier lower bounds of a
similar shape but without the log log log T factor inside the square root. By further
elaboration of their method, the constant 1 + o(1) has even more recently been improved
to
√

2 + o(1) by La Bretèche and Tenenbaum [8].
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To appreciate these bounds, and contemplate where the truth might lie between them,
it is instructive to consider a rough outline of the proofs.

Assuming the truth of the Riemann Hypothesis, one can prove upper bounds of
roughly the following shape: for any large t and any parameter x ≤ t, we have

(1) log |ζ(1/2 + it)| . <
∑
p≤x

1
p1/2+it +O

(
log t
log x

)
.

See, for example, the Main Proposition of Soundararajan [18]. Note that this is another
very nice manifestation of Principle 1.3: if we are only interested in upper bounds, we
can control log |ζ(1/2+ it)| by sums over primes at every point t, even on the critical line.
As noted previously, one cannot hope for a similar lower bound at every point, since
when ζ(1/2 + it) = 0 the left hand side will be undefined (equal to −∞, informally).

It is difficult to give a pointwise bound for this sum over primes except in a trivial
way (especially when x is small), namely <∑p≤x

1
p1/2+it ≤

∑
p≤x

1√
p
∼ 2x1/2

log x . So to obtain
the best possible upper bound for log |ζ(1/2 + it)|, we choose x to balance the size of
this term and the “big Oh” term. Choosing x � log2 t is optimal, and yields the claimed
bound log |ζ(1/2 + it)| � log t

log log t assuming the Riemann Hypothesis.
To prove their lower bound, Bondarenko and Seip [5] work to compare the sizes

(roughly speaking) of
∫ T

1 ζ(1/2 + it)|R(t)|2dt and
∫ T

1 |R(t)|2dt, where R(t) is an auxiliary
“resonator” function that is chosen to concentrate its mass at points where ζ(1/2 + it)
should be large. For any choice of R(t), the triangle inequality implies that

max
1≤t≤T

|ζ(1/2 + it)| ≥ |
∫ T

1 ζ(1/2 + it)|R(t)|2dt|∫ T
1 |R(t)|2dt

,

and if R(t) is well chosen one can hope for this lower bound to be fairly efficient.
One of Bondarenko and Seip’s main innovations, as compared with previous arguments,

is to choose R(t) = ∑
m∈M r(m)m−it for certain intricately constructed coefficients r(m)

whose support is not constrained to the interval [1, T ] (as would be usual to allow one
to control error terms when evaluating the integrals). Instead they allow r(m) 6= 0
even when m is extremely large, although only on a very sparse sequence of m so that
the error terms remain under control. Very roughly speaking, Bondarenko and Seip’s
resonator R(t) concentrates its mass on those t for which ∑Pe<p<Pe(log logT )c

1
p1/2+it is very

large, where P = C log T log log T and c < 1 and C are suitable constants, and with
some penalisation (something like 1

log(p/P )) of the larger p in the interval that are harder
to control. For a typical t, one expects this sum to have order roughly its standard
deviation, namely

≈
√√√√ ∑
e< p

P
<e(log logT )c

1
p log( p

P
) �

√√√√ 1
log log T

∑
e< n

P
<e(log logT )c

1
n log( n

P
) �

√
log log log T

log log T ,

using e.g. Chebychev’s bounds for the density of the primes. So if we look for the largest
values attained as 1 ≤ t ≤ T varies, then motivated by the second part of Lemma 1.6
we could expect this to have size �

√
log T

√
log log log T

log log T , and this is precisely the lower
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bound that Bondarenko and Seip are able to prove for zeta by computing the integrals
with their choice of R(t). Note that when applying Lemma 1.6 to get an idea of what
to expect here, it is unimportant whether we assume that varying over 1 ≤ t ≤ T

corresponds to taking about T independent samples (as would be the usual heuristic,
see below), or T 2 or

√
T samples (say), as the logarithms of all these quantities have

the same order of magnitude.

If we compare these upper and lower bound arguments, we see that both of them
come down to analysing contributions from fairly small primes, of size log2 T at most. In
the upper bound arguments, one would like to show some cancellation but is forced to
resort to trivial estimates, whereas in the lower bounds one wants to show large values
are attained. But considering the problem heuristically, there is no reason to believe
that the extreme behaviour of |ζ(1/2 + it)| should be dominated by the behaviour of
these very small primes that we are forced to focus on due to methodological limitations.

We have the following conjecture of Farmer–Gonek–Hughes [9] about the true size of
max0≤t≤T |ζ(1/2 + it)|.

Conjecture 2.5 (Farmer, Gonek and Hughes, 2007). — We have

max
0≤t≤T

|ζ(1/2 + it)| = exp
{( 1√

2
+ o(1)

)√
log T log log T

}
,

where the o(1) term tends to 0 as T →∞.

Farmer, Gonek and Hughes supply various arguments in support of this conjecture,
including a random matrix model, a random primes model (essentially Principle 1.1),
and a combination of these. If we assume that something like the Selberg Central Limit
Theorem remains valid in a very large deviations regime (so that log |ζ(1/2 + it)| ≈
N(0, (1/2) log log T )), and further assume that varying over 0 ≤ t ≤ T corresponds to
taking about T independent samples, then Lemma 1.6 would suggest that

max
0≤t≤T

log |ζ(1/2 + it)| ≈
√

2 log T
√

(1/2) log log T =
√

log T log log T .

So this rather simple approach gives a conjecture of the same shape as Conjecture 2.5,
although with a constant 1 instead of 1/

√
2 in the exponent. Farmer, Gonek and

Hughes [9] credit this observation to Montgomery. If one combines this simple line of
argument with the bound (1), one can in fact recover Conjecture 2.5 exactly. Thus if
T ≤ t ≤ 2T , and we take x = e

√
log T in (1), we get (assuming RH)

log |ζ(1/2 + it)| . <
∑

p≤e
√

logT

1
p1/2+it +O

(√
log T

)
.

This choice of x is basically the smallest possible such that the “big Oh” term will be
of small order compared with the lower bounds we have. (If the reader prefers, he or
she could take x = e

√
log T log log T so the “big Oh” term would really be smaller than the

lower bound we know from Theorem 2.4. This will make no difference to the conjecture
we shall derive, it would just be messier to write!) Then using Lemma 1.5, the mean
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square of <∑
p≤e
√

logT
1

p1/2+it is ∼ (1/4) log log T . So now if we assume that this sum will
behave like a N(0, (1/4) log log T ) random variable, then Lemma 1.6 suggests that

max
0≤t≤T

log |ζ(1/2 + it)| ≈
√

2 log T
√

1
4 log log T +O(

√
log T )

=
√

1
2 log T log log T +O(

√
log T ).

The key thing that links all the heuristic arguments leading to Conjecture 2.5, and
other conjectures of the same shape, is the assumption of some independence somewhere.
One generally assumes independence in the values of ζ(1/2 + it1), ζ(1/2 + it2) when t1, t2
are sufficiently far apart (e.g. |t1 − t2| > 1, although as noted above the analysis isn’t
very sensitive to the details of this). One also assumes some independence in modelling
the value distribution of zeta at a single point (this is explicit in the random primes
model/Principle 1.1, in the random matrix models it is less explicit but there is still
much independence in the definition of the random matrices and in their behaviour).

In contrast, if one believes that instead of independence there could be an extreme
conspiracy in the values of the p−it for p small, then one might reasonably believe that the
upper bound in Theorem 2.3 is closer to the truth. Farmer, Gonek and Hughes [9] discuss
this in the final section of their paper. The author tends to prefer the independence to
the conspiracy assumption, but it is hard to see how one can really distinguish between
these possibilities short of actually determining the size of max0≤t≤T |ζ(1/2 + it)|, which
we are probably still far from doing.

3. THE CONJECTURE OF FYODOROV–HIARY–KEATING

Whereas the Selberg Central Limit Theorem gives, unconditionally, a full description
of the typical behaviour of log |ζ(1/2 + it)| (at least to an initial level of precision),
we have seen that our understanding of the largest values attained by log |ζ(1/2 + it)|
is far less complete. Why is this? One answer is that the largest values attained by
log |ζ(1/2 + it)| correspond to very low probability events (i.e. sets of t with measure
much smaller than T ), far in the tails of the distribution. Even in a purely probabilistic
setting, such problems can present considerable difficulties. For example, the quantitative
error terms in probabilistic central limit theorems are often relatively large, so they
become much less useful when directly applied to rare events.

Fyodorov and Keating [11] and Fyodorov, Hiary and Keating [10] recently initiated
study of a problem that is intermediate between these two regimes (although rather
closer to the typical behaviour than the largest values).

Problem 3.1. — As T ≤ t ≤ 2T varies, what is the distribution of max0≤h≤1 |ζ(1/2 +
it+ ih)|?
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Note that for some T ≤ t ≤ 2T , the interval [t, t+ 1] will contain a point t∗ for which
|ζ(1/2 + it∗)| = maxT≤t≤2T |ζ(1/2 + it)|, whose size we don’t understand well. But since
Problem 3.1 is a distributional question, this small subset of t can be ignored (just as in
the statement of the Selberg Central Limit Theorem one needn’t worry about the zeros
of zeta) and one can hope to have a tractable yet interesting question.

The next obvious query is whether we should expect the behaviour of max0≤h≤1 |ζ(1/2+
it+ ih)| to be much different than the behaviour of |ζ(1/2 + it)|? At first glance, taking
the maximum over an interval of bounded length might not be expected to alter things
too significantly, in which case the answer to Problem 3.1 might be a result of a similar
shape to the Selberg Central Limit Theorem.

Here is a heuristic line of argument that suggests the distributional behaviour of
max0≤h≤1 |ζ(1/2 + it + ih)| could actually be a lot different than the behaviour at a
single point. For the sake of this argument we shall make three temporary assumptions,
then later we will examine how reasonable these are.

– (Assumption 1) The Selberg Central Limit Theorem remains valid even some way
into the tails of the probability distribution, in other words the left hand side of
Theorem 2.1 is still well approximated by Φ(z) even when z grows with T “at a
suitable rate”.

– (Assumption 2) As T ≤ t ≤ 2T varies, the values |ζ(1/2+it+ih1)|, |ζ(1/2+it+ih2)|
are “roughly the same” when |h1 − h2| ≤ 1/ log T .

– (Assumption 3) As T ≤ t ≤ 2T varies, the values |ζ(1/2+it+ih1)|, |ζ(1/2+it+ih2)|
behave “roughly independently” when |h1 − h2| > 1/ log T .

Much of our analysis will duplicate steps from the proof of Lemma 1.6, but we will
write it out explicitly for ease of reference and to attain greater precision at some points.

If Assumption 2 is correct, then we have

max
0≤h≤1

|ζ(1/2 + it+ ih)| ≈ max
1≤j≤log T

∣∣∣∣ζ(1/2 + it+ i
j

log T

)∣∣∣∣.
Then for any real u, we have the simple union upper bound:

1
T

meas
{
T ≤ t ≤ 2T : max

1≤j≤log T

∣∣∣∣ζ(1/2 + it+ i
j

log T

)∣∣∣∣ ≥ eu
}

≤
∑

1≤j≤log T

1
T

meas
{
T ≤ t ≤ 2T : log

∣∣∣∣ζ(1/2 + it+ i
j

log T

)∣∣∣∣ ≥ u
}

If Assumption 1 is correct, and if we assume to simplify the writing that u ≥
√

log log T ,
then each summand here will be

≈ P
(
N(0, 1) ≥ u√

(1/2) log log T

)
≈
√

log log T
u

e−u
2/ log log T .
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In particular, if u = log log T − (1/4) log log log T + U for some U ≥ 0 then the right
hand side is

� 1√
log log T

e−(log log T−(1/4) log log log T+U)2/ log log T � 1
log T e

−2Ue−Θ(U2/ log log T ).

Summing over 1 ≤ j ≤ log T , we find that if U is large then the sum will be small, in
other words we can expect that for most t, the maximum max0≤h≤1 |ζ(1/2 + it+ ih)|
has size at most elog log T−(1/4) log log log T+O(1).

For a lower bound, we note that if Assumption 3 is correct then for any u ∈ R,
1
T

meas
{
T ≤ t ≤ 2T : max

1≤j≤log T

∣∣∣∣ζ(1/2 + it+ i
j

log T

)∣∣∣∣ ≤ eu
}

≈
∏

1≤j≤log T

1
T

meas
{
T ≤ t ≤ 2T : log

∣∣∣∣ζ(1/2 + it+ i
j

log T

)∣∣∣∣ ≤ u
}
.

And using Assumption 1 as before to estimate each term in the product, we find the
above is

≈
(

1−
√

log log T
u

e−u
2/ log log T

)blog T c

.

In particular, if we take u = log log T − (1/4) log log log T − U for some fixed U ≥ 0
(note that we have −U here, not U) then each bracket will be ≈ (1 − e2U

log T ), and the
product of blog T c copies of this will be small. So we can expect that for most t, the
maximum max0≤h≤1 |ζ(1/2 + it+ ih)| has size at least elog log T−(1/4) log log log T+O(1) as well.

We shall revisit this heuristic argument later, but record a few immediate observations.
Firstly, the typical size of the maximum derived above is close to elog log T , as opposed
to the size eΘ(

√
log log T ) at a typical point t provided by the Selberg Central Limit

Theorem. So, if the above heuristic is roughly accurate, there should be a real difference
between these situations. Note, however, that this size is still much smaller than the
regime considered in Theorems 2.3 and 2.4, so we are much less far into the tails of the
distribution and can have hopes of a good rigorous analysis of the situation.

Another striking contrast is that in the Selberg Central Limit Theorem, the distribution
of log |ζ(1/2 + it)| is shown to have mean zero and to vary around this on a scale of√

log log T . In our heuristic for the short interval maximum of log zeta, the random
variation occurs on a smaller scale O(1), whilst one has a deterministic main term of
size ∼ log log T .

Let us also note that Assumption 3, the independence assumption, was only required
for the proof of the lower bound. Thus one might suspect, and it will turn out to be
the case, that it should be easier to make our heuristic argument rigorous for the upper
bound than for the lower bound.

As well as proposing the study of Problem 3.1, Fyodorov, Hiary and Keating [10, 11]
also made a precise conjecture about the answer.
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Conjecture 3.2 (Fyodorov–Hiary–Keating, 2012). — For any real function g(T ) that
tends to infinity with T , we have that
1
T

meas
{

0 ≤ t ≤ T :
∣∣∣max
|h|≤1

log |ζ(1/2+it+ ih)|−(log log T −(3/4) log log log T )
∣∣∣ ≤ g(T )

}
tends to 1 as T →∞.

In fact, Fyodorov–Hiary–Keating make an even more precise conjecture than this,
about the distribution of the difference between max|h|≤1 log |ζ(1/2 + it + ih)| and
(log log T − (3/4) log log log T ). But this seems far beyond anything that is rigorously
attackable at present, so we shall not discuss it further here. We also note that the
choice of the interval |h| ≤ 1 is rather arbitrary, and in fact Fyodorov–Hiary–Keating
looked primarily at the interval 0 ≤ h ≤ 2π, which corresponds more naturally with the
random matrix setting. But one will have an analogous conjecture and results for any
interval of fixed non-zero length.

Fyodorov, Hiary and Keating were led to their conjecture via a two step process,
which we shall briefly explain. For given t, in order to understand the behaviour of
max|h|≤1 log |ζ(1/2 + it+ ih)| one might try to compute quantities such as∫

|h|≤1
e2β log |ζ(1/2+it+ih)|dh =

∫ t+1

t−1
|ζ(1/2 + iw)|2βdw,

for varying β > 0. The idea is that as β becomes larger, the size of the integral will
be increasingly dominated by the largest values attained by log |ζ(1/2 + it + ih)|. In
the language of mathematical physics, this kind of integral is the partition function
associated with log |ζ(1/2 + it+ ih)|. Since we are interested in what happens as t varies,
we could further try to understand this by computing quantities such as∫ T

0

(∫ t+1

t−1
|ζ(1/2 + iw)|2βdw

)q
dt,

where now q > 0 is a further parameter. For given β, if we can understand the size
of these integrals for all (or many) q we might hope to get a good understanding of
the distribution of

∫ t+1
t−1 |ζ(1/2 + iw)|2βdw. And in turn, if one can understand this for

suitable β one might hope to get a good understanding of max|h|≤1 log |ζ(1/2 + it+ ih)|.
To understand how all these objects might behave, Fyodorov, Hiary and Keating

turned to the well known idea that ζ(1/2 + it) behaves like the characteristic polynomial
of suitable random matrices. In the random matrix setting, they were able to compute
the analogous integrals for a certain range of q ∈ N (depending on β), when β < 1.
Although this amount of information is not sufficient to rigorously conclude things about
the maximum, even in the random matrix setting, they noticed that the quantities
computed agreed with some analogous integrals arising in statistical mechanics. The
Fyodorov–Hiary–Keating conjecture then arises from supposing that characteristic
polynomials of random matrices, and further the Riemann zeta function, behave in the
way suggested by those statistical mechanics models.
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We shall not say more about Fyodorov, Hiary and Keating’s motivation for their
conjecture, referring the reader instead to the original papers [10, 11], which also describe
some interesting numerical evidence. We just note that one of the important features
of their statistical mechanics problem is a logarithmic correlation structure, which we
shall discuss much further below. We also note that some parts of Fyodorov, Hiary and
Keating’s conjectures in the random matrix setting, and about the partition function∫ t+1
t−1 |ζ(1/2 + iw)|2βdw, have recently been proved using ideas related to those we shall

describe here. See the papers [1, 4, 16], for example.

Conjecture 3.2 suggests that our earlier heuristic analysis isn’t quite right, but almost,
since the first order term log log T that we obtained was the same. But this suggestion
is a little misleading. As we shall now explain, it is possible to modify the heuristic to
give another supporting heuristic for Conjecture 3.2 (and possible to prove some of this
rigorously, as we shall come to later), but this requires quite careful thought about our
Assumptions 2 and 3.

Recall that we assumed earlier that |ζ(1/2+it+ih1)|, |ζ(1/2+it+ih2)| are “roughly the
same” when |h1 − h2| ≤ 1/ log T , and “roughly independent” when |h1 − h2| > 1/ log T .
The reason for these starting assumptions is that when T ≤ t ≤ 2T is large, we have
rigorously (the Hardy–Littlewood approximation) that

ζ(1/2 + it) =
∑
n≤T

1
n1/2+it +O

( 1√
T

)
,

and we have heuristically (as in Principle 1.3) that

log |ζ(1/2 + it)| ≈ <
∑

p≤T 1/3

1
p1/2+it ,

say. In both of these expressions, the most rapidly varying terms are of the form e−it logn

with log n � log T . Thus if t varies by less than 1/ log T , we can expect the sums not to
change much, but if t varies by more one starts to see significant variation. (Another
possible justification is that the average spacing between imaginary parts of zeta zeros
around T is � 1/ log T .)

The assumption that ζ(1/2 + it) doesn’t usually change much when t varies by less
than 1/ log T is actually very reasonable, at least if one replaces 1/ log T by something
slightly smaller such as 1/ log1.01 T . But if we look at the sum <∑p≤T 1/3

1
p1/2+it , although

it is true that the terms with p ≈ T 1/3 start to vary when t shifts by more than 1/ log T ,
the smaller terms in the sum don’t change until t shifts by much more. In some situations
(e.g. if we looked at ∑p≤T 1/3 p−it), the size of a sum is dominated by the final terms
and so this effect wouldn’t matter, but in ∑p≤T 1/3

1
p1/2+it the contributions from different

parts of the sum are typically much more equal. So |ζ(1/2 + it+ ih1)|, |ζ(1/2 + it+ ih2)|
will not behave entirely independently just because |h1 − h2| > 1/ log T .
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To explain this more precisely, note that we can decompose

(2) <
∑

p≤T 1/3

1
p1/2+it =

∑
0≤k≤log log T

<
∑

eek−1<p≤min{eek ,T 1/3}

1
p1/2+it .

By Principle 1.1, since the inner sums here involve disjoint sets of primes we expect
them to behave independently of one another as t varies. The reason for decomposing
into sums on these ranges is that, by Lemma 1.5, each inner sum has very small mean
value and has mean square

1
2 log

(
ek

ek−1

)
+O

( 1
e100k + T 2/3

T

)
= 1

2 +O
( 1
e100k

)
.

In other words, we have split up into pieces whose typical orders of magnitude are
comparable. And for all the terms in the k-th sum we have log p � ek, so the scale of t
on which this sum doesn’t change much is not 1/ log T , but the wider scale 1/ek.

Another way to capture this phenomenon is to calculate the correlation between
<∑p≤T 1/3

1
p1/2+it and <∑p≤T 1/3

1
p1/2+it+ih . By exactly the same kind of argument as in

Lemma 1.5, one can show that

1
T

∫ 2T

T

(
<

∑
p≤T 1/3

1
p1/2+it

)(
<

∑
p≤T 1/3

1
p1/2+it+ih

)
dt ≈

{
(1/2) log log T if |h| ≤ 1/ log T
(1/2) log(1/|h|) if 1/ log T < |h| ≤ 1.

Thus if |h| ≤ 1/ log T , this average is roughly the same size as the mean square of
<∑p≤T 1/3

1
p1/2+it , in other words the sums are almost perfectly correlated and behave

in the same way. As |h| increases, so more and more sums at t and t + h in the
decomposition (2) become decoupled, the correlation goes down and the behaviour of
<∑p≤T 1/3

1
p1/2+it and <∑p≤T 1/3

1
p1/2+it+ih becomes increasingly different.

It is a general principle that, given Gaussian random variables with mean zero and
equal variances, if they are positively correlated then the maximum is smaller (in a
distributional sense) than if they were independent. For example, this follows from a
very useful probabilistic result called Slepian’s Lemma. This is somewhat intuitive, since
positive correlations mean that the random variables tend to be big or small together,
so we have fewer “genuinely independent” tries at obtaining a very large value. Thus
we can see, in quite a soft way, that if log |ζ(1/2 + it + ih1)|, log |ζ(1/2 + it + ih2)|
are positively correlated (rather than independent) when |h1 − h2| > 1/ log T , then
max0≤h≤1 |ζ(1/2 + it+ ih)| should be smaller than our initial analysis predicted. This is
fully consistent with Conjecture 3.2.

There is no such soft argument for determining exactly how much smaller we should
expect the maximum to be in the presence of positive correlation, but in recent years
the probabilistic tools to do this have become available.
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Theorem 3.3 (Harper, 2013). — Let (Xp)p prime be a sequence of independent random
variables, each distributed uniformly on the complex unit circle. Then with probability
tending to 1 as T →∞, we have

log log T − 2 log log log T − C(log log log T )3/4

≤ max
|h|≤1
<
∑
p≤T

Xp

p1/2+ih

≤ log log T − (1/4) log log log T + C
√

log log log T ,

where C > 0 is a certain absolute constant.

Theorem 3.4 (Arguin, Belius and Harper, 2017). — Let (Xp)p prime be a sequence of
independent random variables, each distributed uniformly on the complex unit circle.
Then for any ε > 0, with probability tending to 1 as T →∞ we have

log log T − (3/4 + ε) log log log T

≤ max
|h|≤1
<
∑
p≤T

Xp

p1/2+ih

≤ log log T − (3/4− ε) log log log T.

Strictly speaking, Theorem 3.3 is proved for a slightly different sum (with a smooth
weight), and both Theorems are proved for slightly different ranges of h. But the
methods would certainly yield the stated results. Harper [13] proves the upper bound in
Theorem 3.3 using a union bound argument, and proves the lower bound by substituting
the logarithmic correlation structure of these sums into general lower bound results
for random processes from [12]. Arguin, Belius and Harper [3] prove Theorem 3.4 by
working explicitly with a decomposition like (2), using methods from the theory of
branching random walks. Note that the conclusion of Theorem 3.4 exactly agrees, for
these randomised prime number sums, with Conjecture 3.2 (although Theorem 3.4
is less precise). So now if we believe in suitably strong versions of Principle 1.1 (so
that <∑p≤T

1
p1/2+it+ih behaves like <∑p≤T

Xp
p1/2+ih as t varies) and Principle 1.3 (so that

log |ζ(1/2 + it + ih)| is typically close to <∑p≤T
1

p1/2+it+ih as t varies), then we have
another strong reason for believing Conjecture 3.2.

4. PROGRESS TOWARDS THE CONJECTURE

In this section we describe some rigorous theorems about the zeta function that make
progress towards Conjecture 3.2.

Theorem 4.1 (Najnudel, 2018). — For any real function g(T ) that tends to infinity
with T , we have

1
T

meas
{

0 ≤ t ≤ T : max
|h|≤1

log |ζ(1/2 + it+ ih)| ≤ log log T + g(T )
}
→ 1 as T →∞.
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Furthermore, if the Riemann Hypothesis is true then for any ε > 0 we have
1
T

meas
{

0 ≤ t ≤ T : max
|h|≤1

log |ζ(1/2 + it+ ih)| ≥ (1− ε) log log T
}
→ 1 as T →∞.

Theorem 4.2 (Arguin, Belius, Bourgade, Radziwi l l, Soundararajan, 2016)
Najnudel’s Theorem is true without the need to assume the Riemann Hypothesis.

Before we turn to the proofs of these results, we make a few explanatory remarks.
Najnudel’s paper [15] appeared in preprint form on the arXiv in November 2016, and
the independent preprint of Arguin, Belius, Bourgade, Radziwi l l and Soundararajan [2],
which didn’t require the assumption of the Riemann Hypothesis, was posted to the
arXiv in December 2016. Najnudel proves analogous results (assuming RH) for the
imaginary part of log ζ(1/2 + it+ ih) as well. It is possible, but not certain, that some of
these could also be made unconditional using the methods of Arguin, Belius, Bourgade,
Radziwi l l and Soundararajan.

The upper bounds in Theorems 4.1 and 4.2 are much easier than the lower bounds,
and aside from differences in detail are proved in similar ways. Essentially the same
argument was also sketched at the end of the introduction to the author’s preprint [13].
If we looked at a discrete maximum over points h = j/ log T with |j| ≤ log T , instead of
the maximum over a continuous interval |h| ≤ 1, we could argue that

1
T

meas
{

0 ≤ t ≤ T : max
|j|≤log T

log
∣∣∣∣ζ(1/2 + it+ i

j

log T

)∣∣∣∣ > log log T + g(T )
}

≤
∑

|j|≤log T

1
T

meas
{

0 ≤ t ≤ T : log
∣∣∣∣ζ(1/2 + it+ i

j

log T

)∣∣∣∣ > log log T + g(T )
}

≤
∑

|j|≤log T

1
T

∫ T

0

|ζ(1/2 + it)|2
e2(log log T+g(T ))dt.

It is a classical result of Hardy and Littlewood that
∫ T

0 |ζ(1/2 + it)|2dt ∼ T log T as
T → ∞, so the right hand side is � e−2g(T ), which indeed tends to 0 as T → ∞. To
pass from the continuous maximum to the discrete maximum, one can just use classical
analytic techniques such as the Sobolev–Gallagher inequality (essentially estimating
the average size of the derivative of ζ(1/2 + it)). See e.g. the paper of Arguin–Belius–
Bourgade–Radziwi l l–Soundararajan [2]. Note that this argument is really quite similar
to the heuristic one we gave before, with the second moment asymptotic for the zeta
function (which is an exponential moment calculation for log |ζ(1/2 + it)|) providing the
necessary large deviation estimate for log |ζ(1/2 + it)|. The fact that we don’t get the
extra subtracted term −(1/4) log log log T in the rigorous argument reflects a standard
inefficiency when bounding large deviation probabilities/measures using exponential
moments.

To prove the lower bound in Theorem 4.1, Najnudel’s main number theoretic input is
a striking estimate of the following shape: if the Riemann Hypothesis is true, and if t is
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large and 1 ≤ x� t is a parameter, then

(3) max
|h|≤1

log |ζ(1/2 + it+ ih)| & max
|h|≤1/2

<
∑
p≤x

1
p1/2+it+ih +O

( log t
(log x)C + xC

t

)
.

The reader should compare this with Soundararajan’s upper bound (1). The correct state-
ment of this lower bound is a bit more complicated, in particular the sum ∑

p≤x
1

p1/2+it+ih

should really be an infinite sum with a smooth cutoff that decays when p > x, and there
is some contribution from prime squares as well. But to get an idea of the argument
one can just think of (3).

As in many similar situations (e.g. Soundararajan’s [18] proof of (1)), Najnudel
assumes the Riemann Hypothesis when proving (3) to avoid the appearance of other
large terms corresponding to possible zeros of the zeta function off the critical line. This
reflects the general duality between prime numbers being well distributed, Euler product
type formulae roughly holding, and the zeros of the zeta function being well behaved, as
discussed at the very beginning of this paper. The other important thing to note here is
the role played by the maximum over h. We have remarked several times that it would
be impossible to prove a pointwise lower bound comparable to (1) or (3), because at a
zero of the zeta function the prime number sum is finite but log zeta becomes undefined.
Roughly speaking, in the course of proving (3) Najnudel exploits the fact that

max
|h|≤1/ log0.99 x

log |ζ(1/2 + it+ ih)| ≥ log0.99 x

2

∫
|h|≤1/ log0.99 x

log |ζ(1/2 + it+ ih)|dh.

On the one hand, one can cover the interval |h| ≤ 1 by small intervals of length 2/ log0.99 x

(with a small error at the ends, hence the change to the interval |h| ≤ 1/2 on the right
hand side of (3)), and hope that replacing the maximum in each small interval by its
average (whilst still taking the maximum over all the intervals) won’t reduce the size too
much. On the other hand, since an interval of length 2/ log0.99 x is large compared with
the average spacing � 1/ log t of zeta zeros with imaginary part around t, by integrating
over such an interval one smooths out (and removes the effect of) the blow-up at the
zeros.

The inequality (3) is the manifestation of Principle 1.3 in Najnudel’s argument. Having
passed to prime number sums, with some flexibility in the choice of the length x, Najnudel
shows that they behave like sums of independent random variables (Principle 1.1) by
moment calculations, similarly as discussed following Lemma 1.2. Thus he can argue
about the size of max|h|≤1/2<

∑
p≤x

1
p1/2+it+ih with a similar style of argument, motivated

by branching random walk, as Arguin, Belius and Harper [3] used for their randomised
model of zeta.

For their unconditional lower bound, Arguin, Belius, Bourgade, Radziwi l l and
Soundararajan use a result like Proposition 1.4 to serve as their realisation of Princi-
ple 1.3. The choices of W and P are a bit different than in Proposition 1.4, but the proof
is essentially the same as the one we sketched for that proposition. To apply this to give
lower bounds for max|h|≤1 log |ζ(1/2 + it+ ih)|, a couple of other auxiliary manoeuvres
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are required. Since Proposition 1.4 concerns points slightly off the critical line, one
wants to know that for most t, if there is a large value slightly off the critical line there
will also be one nearby on the critical line. This is swiftly proved using, essentially,
an average bound for the size of the derivative of zeta, obtained by manipulating the
Hardy–Littlewood approximation ζ(1/2 + it) = ∑

n≤T
1

n1/2+it + O( 1√
T

). Also, whereas
Proposition 1.4 supplies information at most individual points T ≤ t ≤ 2T , Arguin–
Belius–Bourgade–Radziwi l l–Soundararajan need results that hold for most intervals
[t−1, t+1]. This extension is obtained by noting that in the proof of Proposition 1.4, the
individual steps (such as the approximation ζ(s)M(s) = 1+o(1)) hold uniformly for most
intervals [t− 1, t+ 1], thanks again to classical Sobolev–Gallagher type manipulations.

By shifting a little off the critical line, and only seeking to approximate (the shifted
version of) max|h|≤1 log |ζ(1/2 + it + ih)| by prime number sums for most t, Arguin–
Belius–Bourgade–Radziwi l l–Soundararajan can avoid Najnudel’s appeal to the Riemann
Hypothesis.

Having reached this stage, moment calculations with the prime number sums again
show that they behave like sums of independent random variables (Principle 1.1), and
one can conclude with a branching random walk style argument.

We finish with a glance at what remains to be done to prove Conjecture 3.2. Both
Theorems 4.1 and 4.2 are less precise than the conjecture, but it seems quite reasonable
to think that the methods have not yet been fully perfected, so that more precise results
could be extracted. On the other hand, to increase the precision in these methods one
needs to approximate the zeta function by prime number sums that are longer, and at
points that are closer to the critical line. At a certain point the influence of the zeta
zeros, and (more technically) of off-diagonal terms that would start to appear in the
analysis, obstructs progress. Because the scale log log T on which one is working grows
so slowly with T , one has quite a lot of flexibility in truncating sums, etc. if one just
wants to get close to the answer, but this starts to disappear if one wants a precise
answer.

One particular landmark en route to proving Conjecture 3.2, which might be achievable,
would be to prove that usually max|h|≤1 log |ζ(1/2 + it+ ih)| ≤ log log T − c log log log T
for some c > 1/4. The Conjecture predicts that one can take c = 3/4 + o(1), whereas
we have seen (in our initial heuristic argument) that one would get c = 1/4 + o(1) if
|ζ(1/2 + it+ ih1)|, |ζ(1/2 + it+ ih2)| behaved “roughly independently” when |h1− h2| >
1/ log T . We saw in our later analysis that this shouldn’t really be the case, and proving
an upper bound with some fixed c > 1/4 would give a concrete (if rather subtle)
manifestation of this failure of independence.
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