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HODGE THEORY AND O-MINIMALITY
[after B.Bakker, Y.Brunebarbe, B.Klingler, and J. Tsimerman]

by Javier Fresán

INTRODUCTION

Envisioned by Grothendieck (1984) as a way out of the pathologies that one en-
counters when dealing with all topological spaces, tame topology has reached maturity
over the last decades through the study of o-minimal structures in model theory. In a
nutshell, attention is restricted to those topological spaces obtained by gluing finitely
many subsets of Rn that are definable by first order formulas involving the operations
and the order coming from the real numbers, as well as functions of a certain class
chosen beforehand. The collection of such sets is called a structure, and one says that a
structure is o-minimal if the only definable subsets of R are finite unions of points and
open intervals. For example, the structure Ran,exp in which real analytic functions on
the unit hypercube and the real exponential are available is o-minimal. In developing
a complex geometry with definable opens as charts, this axiom allows for global alge-
braicity results without renouncing the local flexibility of analytic varieties, as is best
illustrated by the o-minimal Chow theorem of Peterzil and Starchenko (2009): if
a closed analytic subset of a complex algebraic variety is definable in some o-minimal
structure, then it is automatically algebraic, whether the ambient space is proper or
not. In a slightly different direction, a celebrated theorem of Pila and Wilkie (2006)
affirms that definable subsets of Cn with many rational points of bounded height nec-
essarily contain non-trivial semialgebraic subsets on which most of these points will lie.
By means of this result, o-minimality has found spectacular applications to diophantine
geometry. My aim in this survey is to convey the idea that it has very recently become
an important tool to understand Hodge theory as well.

Our main object of interest will be the period maps describing how Hodge struc-
tures vary on a family of smooth projective varieties. As a case study, one may think
of the Legendre family of elliptic curves parameterised by the punctured projective
line S = P1 r {0, 1,∞}. Recall that its fibres Es are the projective completions of the
affine plane curves y2 = x(x− 1)(x− s). On a small neighbourhood around each point
of S, all fibres are canonically diffeomorphic, so we may choose a common symplectic
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basis γ1, γ2 of H1(Es,Z). By contrast, the position of the line Cω ⊂ H1(Es,C) spanned
by the holomorphic differential ω = dx/y will vary as s moves, for it encodes the com-
plex structure on Es. This is our first example of a polarised variation of pure Hodge
structures. Concretely, the line in question is determined by the ratio

∫
γ2
ω/
∫
γ1
ω of

the two periods of the form ω, and this gives a multivalued map from S to the upper
half-plane H. The monodromy being governed by the congruence group Γ(2), it de-
scends to a holomorphic map from S to the modular curve Γ(2)\H. In this very special
case, the target is an algebraic variety and the period map is even an isomorphism.

For more general families, the role of H is played by a homogeneous space G/M
classifying polarised Hodge structures of the same type as those on the cohomology of
the fibres, the modular curve is replaced by the quotient SΓ,G,M of G/M by an arith-
metic subgroup Γ ⊂ G, and the period map is a holomorphic map from the parameter
space to SΓ,G,M . As soon as one leaves the realm of abelian varieties, these arithmetic
quotients are complex analytic spaces which almost never carry an algebraic structure,
so the holomorphic, non-algebraic period maps could a priori behave wildly at infinity.
Nevertheless, Bakker, Klingler, and Tsimerman (2018) show that all period maps
have tame geometry: they are definable in the o-minimal structure Ran,exp relatively to a
natural semialgebraic structure on SΓ,G,M . From this and the o-minimal Chow theorem,
they derive a new proof of the algebraicity of Hodge loci, originally a theorem by Cat-
tani, Deligne, and Kaplan (1995). As another striking application of definability of
period maps, along with a new o-minimal GAGA theorem, Bakker, Brunebarbe,
and Tsimerman (2018) recently established a long-standing conjecture of Griffiths to
the effect that their images are quasi-projective algebraic varieties. Things are rapidly
moving and I feel other breakthroughs are to come.

The text is organised as follows. In section 1, we recall the construction of the pe-
riod map associated with a polarised variation of pure Hodge structures. Section 2
starts with a very brief introduction to o-minimal structures, before turning to the
o-minimal Chow and the o-minimal GAGA theorems. After introducing the key no-
tion of Siegel sets, we prove that arithmetic quotients admit a functorial semialgebraic
definable structure in section 3. Then section 4 is devoted to the proof of definability
of period maps, which relies on a fine description of their asymptotic behaviour near
the boundary. Finally, we present the applications to algebraicity of Hodge loci and
Griffiths’s conjecture in sections 5 and 6 respectively. I recommend the lecture notes
by Bakker (2019) as a complementary reading.

Acknowledgments. — I would like to thank Benjamin Bakker, Olivier Benoist, Yohan
Brunebarbe, Bruno Klingler, Emmanuel Kowalski, Marco Maculan, and Claude Sabbah
for their help in preparing these notes, as well as all the speakers and participants of
the reading seminar “Théorie de Hodge et o-minimalité” at the Université d’Orsay and
the summer school “o-minimal structures in algebraic geometry” at the University of
Freiburg, where I first learnt part of the material.
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1. VARIATIONS OF HODGE STRUCTURES AND PERIOD MAPS

1.1. Polarised pure Hodge structures

Let k be an integer. A pure Hodge structure H of weight k is a finitely generated
abelian group HZ together with a bigrading HC = ⊕

p+q=kH
p,q such that Hp,q = Hq,p,

where barring stands for complex conjugation. On setting F p = ⊕
r≥pH

r,s, these data
amount to a finite decreasing filtration F • of HC such that F p ⊕ F k+1−p = HC for
all p. The dimensions hp,q = dimC H

p,q are called the Hodge numbers, and F • is called
the Hodge filtration. Yet another equivalent way of thinking of Hodge structures is as
representations ϕ : S→ GL(HR) of Deligne’s torus S, which is the real algebraic group
of invertible matrices of the form

(
a −b
b a

)
. Being pure of weight k is then the condition

that the diagonal subtorus ( t 0
0 t ) acts through the homothety of ratio tk, and Hp,q is

recovered as the eigenspace for the character z 7→ z−pz−q of S(R) ∼= C× acting on HC.
A morphism of Hodge structures is a homomorphism of the underlying abelian groups
that is compatible with the Hodge filtration, or equivalently with the action of S.

Let qZ : HZ × HZ → Z be a bilinear form which is symmetric if k is even and
alternating if k is odd. The associated Hodge form is the hermitian form

h : HC ×HC −→ C, h(u, v) = qC(Cu, v),

where C is the Weil operator acting as multiplication by ip−q on the summand Hp,q.
We say that qZ is a polarisation on H, or that H is polarised by qZ, if the Hodge
decomposition is h-orthogonal and h is positive-definite:

a) h(u, v) = 0 whenever u and v lie in different subspaces Hp,q,

b) h(u, u) > 0 for all non-zero u ∈ HC.

In particular, qZ is non-degenerate. The above conditions, which generalise the classical
Riemann relations for abelian varieties, are often referred to as bilinear Hodge–Riemann
relations. In terms of the Hodge filtration, a) says that the orthogonal complement of F p

with respect to h is precisely F k+1−p. If Z(−k) denotes the Hodge structure of weight 2k
on (2πi)−kZ, it also amounts to asking that h : H⊗H → Z(−k) is a morphism of Hodge
structures. When a polarisation exists, we say that H is polarisable.

Example 1.1. — Let X be a smooth projective complex variety of dimension n.
Singular cohomology Hk(X,Z) carries a polarisable pure Hodge structure of weight k.
Upon identifying its complexification Hk(X,C) with algebraic de Rham cohomol-
ogy Hk(X,Ω•X), the Hodge filtration is given by F p = Im(Hk(X,Ω•≥pX ) ↪→ Hk(X,C)).
Polarisations come from choosing the class of a hyperplane section η ∈ H2(X,Z) and
considering the Lefschetz operator L : H∗(X,Z) → H∗+2(X,Z) given by cup product
with η. For each j ≤ n, one defines the j-th primitive cohomology as

P j(X,Z) = ker(Ln−j+1 : Hj(X,Z) −→ H2n−j+2(X,Z)),
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which is a sub-Hodge structure of Hj(X,Z). According to the Lefschetz theorems, it is
polarised by the intersection form

qjZ : P j(X,Z)× P j(X,Z) −→ Z

(α, β) 7−→ (−1)
j(j−1)

2

∫
X
ηn−j · α · β,

and the whole cohomology in each degree k decomposes rationally as the direct sum

Hk(X,Q) =
bk/2c⊕
i=0

LiP k−2i(X,Q),

where the Lefschetz operator and primitive cohomology are now taken with rational
coefficients and P j(X,Q) = 0 for all j > n. Modifying the signs as (−1)iqk−2i

Q on the i-th
summand gives rise to a polarisation on Hk(X,Q) that, after clearing denominators by
multiplying by a sufficiently large integer, induces a polarisation on Hk(X,Z).

1.2. Period domains

The book by Carlson, Müller-Stach, and Peters (2017) is a nice reference
for this section. Fix an integer k, a finitely generated abelian group HZ of rank r, a
bilinear form qZ on HZ which is symmetric if k is even and alternating if k is odd, and
a collection of non-negative integers {hp,q}p+q=k such that hp,q = hq,p and ∑hp,q = r.
Associated with these data is a period domain D classifying pure Hodge structures of
weight k on HZ which are polarised by qZ and have Hodge numbers hp,q. Although D
is a priori only a set, it can be endowed with the structure of a complex manifold as
follows. Setting fp = ∑

r≥p h
p,q, one first considers the compact dual

(1) Ď =
{

finite decreasing filtrations F • on HC such
that (F p)⊥ = F k+1−p and dimF p = fp

}
,

which is a closed analytic subset of the product of Grassmannians ∏p Gr(fp, HC), and
hence a projective complex variety. The period domain is the open subset D ⊂ Ď
consisting of those filtrations for which the Hodge form is positive-definite.

Let G = Aut(HQ, qQ) be the group of automorphisms g ∈ GL(HQ) which are com-
patible with the polarisation in that qQ(g(x), g(y)) = qQ(x, y) for all x, y ∈ HQ. It is a
semisimple linear algebraic group over Q. By an elementary argument in linear algebra,
its complex points G(C) operate transitively on Ď. The compact dual is hence smooth
and the period domain inherits the structure of a complex manifold from it. More is
true: the subgroup G(R) preserves D ⊂ Ď and the induced action is transitive as well.
If we choose some base point of D and we let B and M denote its stabilisers in G(C)
and G(R) respectively, the period domain can be realised as the homogeneous space

D = G(R)/M ↪−→ Ď = G(C)/B.
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Since M consists of real elements and Hp,q = F p ∩ F q, it not only leaves the Hodge
filtration invariant but also the Weil operator and thus the Hodge form; as any isotropy
group of a positive-definite hermitian form, M is hence a compact subgroup of G(R).

Example 1.2. — If k = 1 and the only non-zero Hodge numbers are h1,0 = h0,1 = g, the
period domain is the subset of Gr(g,HC) consisting of totally isotropic subspaces F 1

on which the hermitian form iqC(u, u) is positive-definite. After choosing a symplectic
basis {e1, . . . , eg, f1, . . . , fg} of HC, each F 1 has a unique basis of the form

ωi = ei +
g∑
j=1

zjifj (i = 1, . . . , g),

and it follows from the bilinear Hodge–Riemann relations that the complex g × g ma-
trix Z = (zij) is symmetric and has positive-definite imaginary part. Therefore, the
period domain D is in bijection with Siegel’s upper half-space

Hg = {g × g symmetric matrices Z = X + iY with Y positive-definite}.

In this case, G = Sp2g is the symplectic group,M = Ug is a maximal compact subgroup
of its real points, and Hg = G(R)/M is a hermitian symmetric domain.

1.3. Variations of polarised pure Hodge structures

Let S be a smooth connected quasi-projective complex variety. By a local system
on S we mean a locally constant sheaf VZ of finitely generated abelian groups on S(C).
Upon choosing a base point s0 ∈ S, giving a local system on S amounts to giving a
representation ρ : π1(S, s0) → GL(VZ,s0) of the fundamental group based at s0, which
is called the monodromy representation. Another incarnation of the local system VZ

is the holomorphic flat vector bundle (VO,∇) = (VZ ⊗ZS
OS, id ⊗ d). An example to

keep in mind arises from families of algebraic varieties parameterised by S. Namely, if
f : X → S is a smooth projective morphism from a smooth quasi-projective variety X ,
the sheaf VZ = Rkf∗ZX gathering the k-th singular cohomology of the fibres Xs = f−1(s)
as s varies forms a local system on S, and the associated holomorphic flat vector bun-
dle is VO = Rkf∗Ω•X/S together with the Gauss–Manin connection ∇. The Hodge
filtration on the cohomology Hk(Xs,C) is induced by the holomorphic subbundles
F p = Rkf∗Ω•≥pX/S of VO. A remarkable observation of Phillip A. Griffiths (1968)
is that, although F p is rarely preserved by the connection, its image still satisfies the
transversality constraint ∇(F p) ⊂ F p−1 ⊗OS

Ω1
S. Moreover, the results from Exam-

ple 1.1 carry over to this relative setting: the choice of an element η ∈ H2(X ,Z) whose
restriction to each fibre is the class of a hyperplane section allows mutatis mutandis
for the construction of a morphism of local systems q : VZ ⊗ VZ → ZS that induces a
polarisation on each VZ,s. This motivates the following abstract notion of variation of
Hodge structures:

Definition 1.3. — A polarised variation of pure Hodge structures of weight k on S

is the data V = (VZ, F
•, q) of a local system VZ on S, a finite decreasing filtration F •
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of VO by holomorphic subbundles, and a morphism of local systems q : VZ × VZ → ZS

such that ∇(F p) ⊂ F p−1 ⊗OS
Ω1
S for all p and that (F •, q) endows each fibre VZ,s with

a polarised pure Hodge structure of weight k.

Let V be a polarised variation of pure Hodge structures of weight k on S. Fix a base
point s0 ∈ S, let p : S̃ → S be the corresponding universal cover of S and HZ = VZ,s0 .
Since S̃ is simply connected, p∗VZ is canonically isomorphic to the trivial local sys-
tem S̃ × HZ and q pulls back to a bilinear form qZ on HZ. This corresponds to a
complex analytic trivialisation of p∗VO as a product S̃×HC. Let F̃ p be the subbundles
of the latter obtained by pulling back F p ⊂ VO. For each s̃ ∈ S̃, the filtration F̃ •s̃ ⊂ HC

induces a polarised pure Hodge structure of weight k on HZ, the Hodge numbers of
which are constant as s̃ moves. The setup of section 1.2 is thus in force, whence a
map Φ̃ : S̃ → D with values in the relevant period domain. Let G(Z) ⊂ G(Q) be the
subgroup of those g such that g(HZ) = HZ. As q is a morphism of local systems, the
representation ρ : π1(S, s0)→ GL(HZ) lands in G(Z). Let Γ ⊂ G(Z) be a subgroup
of finite index containing the image of ρ. By construction, the images under Φ̃ of any
two points lying over the same point of S are related by an element of Γ, and hence Φ̃
descends to the period map Φ: S → Γ\D. The stabilisers for this action are finite, for
they lie in the intersection of the discrete group G(Z) with the compact group M , and
hence the quotient Γ\D is a normal complex analytic space. The situation is pictured
in the following commutative diagram:

(2) S̃
Φ̃

//

p

��

D
π

��

S
Φ

// Γ\D.

By construction, the period map Φ is holomorphic and locally liftable to D. Besides,
Griffiths’s transversality forces its differential to take values in the horizontal tangent
bundle of Γ\D. In Lie-theoretic terms, the tangent bundle of Ď at a point F • is given
by TF •Ď = gC/bC, where g and b denote the Lie algebras of G and the stabiliser of F •
respectively. Considering those elements X ∈ gC such that X(F rHC) ⊂ F r+pHC for
all r, we get a filtration F pgC whose zeroth step is nothing but bC. It endows g with
a pure Hodge structure of weight zero. The constraint is then that dΦ̃ takes values
in F−1gC/F

0gC ⊆ TF •Ď, and we simply say that Φ is horizontal. By extension, we
shall call period map any holomorphic, horizontal, and locally liftable map from S to
the quotient Γ\D by a subgroup Γ ⊂ G(Z) of finite index.

1.4. Mumford–Tate groups and Hodge loci

Let H be a polarisable pure Hodge structure of weight k, thought of as a representa-
tion ϕ : S→ GL(HR), and let U be the subgroup of Deligne’s torus consisting of those
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matrices with a2 +b2 = 1. The (special) Mumford–Tate group of H is the Q-Zariski clo-
sure MT(H) of the image of ϕ|U, namely the smallest Q-algebraic subgroup of GL(HQ)
the real points of which contain ϕ(U(R)). It is a connected reductive linear algebraic
group. Since det(h(U)) ⊂ Gm is compact and connected, MT(H) lies in SL(HQ). Be-
sides, the fact that qZ : H⊗H → Z(−k) is a morphism of Hodge structures means that
the equality qZ(ϕ(z)x, ϕ(z)y) = (zz)kqC(x, y) holds for all z ∈ C×, and hence MT(H)
preserves the polarisation. In terms of Hodge classes, this group may be interpreted as
follows. Given integers a, b ≥ 0, the tensor construction T a,bH = H⊗a ⊗ (H∨)⊗b carries a
polarised pure Hodge structure of weight w = k(a− b), so it makes sense to speak of
the subspace Hdga,bH of Hodge tensors, which are those classes α such that αC is homoge-
neous of Hodge type (w/2, w/2). The group GL(HQ) acts naturally on T •,•H = ⊕

a,b T
a,b
H

and MT(H) is the largest subgroup fixing Hdg•,•H = ⊕
a,b Hdga,bH .

Let S be a smooth connected quasi-projective complex variety, V a polarised variation
of pure Hodge structures of weight k on S, and Φ: S → Γ\D the corresponding period
map. For each ϕ ∈ D, the Noether–Lefschetz locus NL(ϕ) is the set of those ϕ′ ∈ D such
that Hdg•,•ϕ′ ⊃ Hdg•,•ϕ or, equivalently, that MT(ϕ′) ⊂ MT(ϕ). It is a complex sub-
manifold of the period domain, indeed a homogeneous space for the group MT(ϕ)(R).
These submanifolds are called Mumford–Tate subdomains of D and their images by the
quotient map π : D → Γ\D are the Mumford–Tate subvarieties of Γ\D. The Hodge
locus of the variation of Hodge structures is then defined as the union HL(S,V) ⊂ S

of all preimages which are not the whole S of Mumford–Tate subvarieties under the
period map. It is a countable union of irreducible closed analytic subvarieties of S.
Over its complement, all fibres Vs share the same Mumford–Tate group, which is called
the generic Mumford–Tate group and denoted by MT(V). By construction, the image
of the period map lies in the Mumford–Tate subvariety corresponding to MT(V).

1.5. Quotients of period domains are rarely algebraic

In closing this section, I would like to mention a result of Phillip Griffiths, Robles,
and Toledo (2014) saying that the targets of period maps are rarely algebraic. We keep
notation from section 1.2, and we write K for the unique maximal compact subgroup
of G containing M and p : G/M → G/K for the associated projection. We call the
period domain D = G/M classical if G/K is a hermitian symmetric domain and p is
either holomorphic or anti-holomorphic. Otherwise, D is said to be non-classical.

Theorem 1.4 (Griffiths–Robles–Toledo). — Assume that the group G is simple and
adjoint and that the period domain D is non-classical. For every infinite and finitely
generated subgroup Γ ⊂ G(Z), the normal complex analytic space Γ\D does not carry
an algebraic structure and what’s more, it cannot be compactified by a Kähler manifold.
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2. O-MINIMALITY

O-minimality is an axiom for collections of subsets of Rn which allows one to axioma-
tise and generalise the properties of semialgebraic sets. For a general introduction to
o-minimal structures, we refer the reader to the book by van den Dries (1998) or to
the short presentations given at this seminar by Scanlon (2012) and Wilkie (2009).

2.1. O-minimal structures

Definition 2.1. — A structure expanding the field of real numbers is a collec-
tion S = (Sn)n≥1 of subsets Sn ⊂ P(Rn) of the power set of Rn satisfying the following:
1. Sn contains all algebraic subsets of Rn;

2. Sn is a boolean subalgebra of P(Rn), i.e. it is stable by finite union, intersection,
and complement;

3. if A ∈ Sp and B ∈ Sq, then A×B ∈ Sp+q;

4. if p : Rn+1 → Rn is a linear projection and A ∈ Sn+1, then p(A) ∈ Sn.
The elements of Sn are called the S-definable subsets of Rn. A map f : A→ B between
two S-definable sets is definable if its graph is S-definable.

Algebraic subsets do not form a structure since their projections are in general only
semialgebraic. The smallest structure, denoted by Ralg, is the one in which definable
subsets are precisely semialgebraic subsets. In this case, the only condition that de-
mands a non-trivial verification is stability under linear projections, which is a theorem
of Tarski and Seidenberg. The composites of S-definable maps are S-definable, as so
are the images and the preimages of S-definable sets under S-definable maps. The
closure cl(A) of an S-definable subset A ⊂ Rn is again definable, for it may be written
as

Rn r p
(

Rn+1 r q
(
{(x, ε, y) ∈ Rn ×R ×Rn |

n∑
i=1

(xi − yi)2 < ε2} ∩ A×R ×Rn
))
,

where p(x, ε) = x and q(x, ε, y) = (x, ε).

Definition 2.2. — A structure S is said to be o-minimal if S1 consists precisely of
the semialgebraic subsets of R, i.e. the finite unions of points and open intervals.

The structure Ralg is obviously o-minimal. More generally, a collection F = ⋃Fn
of distinguished real-valued functions on each Rn gives rises to a structure in which
definable sets consist of tuples that satisfy a property expressible by a first order formula
involving the ring operations +,−, and ·, the order <, the functions in F , logical
connectives “negation” ¬, “conjunction” ∧, “disjunction” ∨, and “implication” →, and
quantifiers “for all” ∀ and “there exists” ∃ which are allowed to run over the real
numbers. For example, the sets {x ∈ Rn | f(x) = g(x)} and {x ∈ Rn | f(x) < g(x)}
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are definable for all functions f, g of n variables built out of Fn and polynomials, and
any other definable set is obtained from these by finite boolean combinations and linear
projections. The o-minimality axiom expresses a tension between the stability under
all these operations and the strong finiteness that definable subsets of R must satisfy.
It prevents infinite discrete sets or space-filling curves from being definable.

Here are some examples:
1. If F = {exp: R → R}, the resulting structure Rexp is o-minimal by a seminal

theorem of Wilkie (1996). However, o-minimality is lost if one replaces the
exponential with say the sine, as {x ∈ R | sin(x) = 0} is an infinite discrete set.

2. A restricted real analytic function is a real function on Rn which vanishes outside
the hypercube [0, 1]n and coincides inside with a real analytic function defined
on an open neighbourhood of [0, 1]n in Rn. Taking F to consist of all restricted
analytic functions, it follows from results of Gabrielov (1968) in semianalytic
geometry that the corresponding structure Ran is o-minimal.

3. Combining the previous two examples, the structure Ran,exp in which F contains
restricted analytic functions and the exponential is o-minimal by a theorem of van
den Dries and Miller (1994). In general, the smallest structure containing two
o-minimal structures need not be o-minimal again.

2.2. Definable topological spaces and analytic spaces

From now on, we fix an o-minimal structure S and “definable” means S-definable.
We work in the category of Hausdorff topological spaces.

Definition 2.3. — A definable topological space is the data of a topological space X ,
a finite open covering {Ui} of X , and homeomorphisms ϕi : Ui → Vi ⊂ Rn such that
all Vi and Vij = ϕi(Ui ∩ Uj) are definable, as well as the maps ϕi ◦ ϕ−1

j : Vij → Vij.
As usual, the pairs (Ui, ϕi) are called charts. A morphism between two such topological
spaces is a continuous map which is definable on the given charts.

Let me emphasise the importance of asking that there are finitely many charts. As-
sociated with a definable topological space X is the definable site X in which objects
are definable subsets U ⊂ X and admissible coverings are finite coverings. In order
to talk about definable complex analytic spaces, we identify Cn with R2n by tak-
ing real and imaginary parts and we import the notion of definable set from R2n.
If U ⊂ Cn is a definable open subset and OCn(U) denotes the C-algebra of holomor-
phic definable functions U → C, the assignment U  OCn(U) defines a sheaf on Cn

the stalks of which are local rings. Given an open definable subset U ⊂ Cn and a
finitely generated ideal I ⊂ O(U), its zero locus V (I) ⊂ U is definable and carries the
sheaf OV (I) = (OU/IOU)|V (I). A definable analytic space is a pair (X ,OX ) consisting
of a definable topological space X and a sheaf OX on X , the stalks of which are local
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rings, such that there exists a finite open covering by definable subsets Xi ⊂ X on which
each (X ,OX )|Xi

is isomorphic to some (V (I),OV (I)).

2.3. Quotients

Let X be a definable topological space and R ⊂ X ×X a closed definable equivalence
relation. A definable geometric quotient of X by R is a surjective morphism p : X → Y
of definable topological spaces such that the fibres of p are the equivalence classes of R
and Y carries the quotient topology. If such a quotient exists, then it is unique up to
unique isomorphism and we denote it by X/R. We say that R is definably proper if the
preimages by the projections of definable compact subsets of X are compact subsets
of R. By Theorem 2.15 of van den Dries (1998), geometric quotients exist under this
assumption.

Theorem 2.4 (van den Dries). — If X is a definable topological space and R is a
closed definably proper equivalence relation, then the geometric quotient X/R exists.

Bakker, Brunebarbe, and Tsimerman (2018) show that geometric quotients also
exist, even in the category of definable analytic spaces, if R ⊂ X ×X is an étale closed
definable equivalence (i.e. the projection maps are open and locally an isomorphism
onto their images), see Corollary 2.19 of loc. cit.

2.4. O-minimal Chow theorem

Recall that Chow’s theorem is the statement that a closed analytic subset Z of a
complex projective variety S is algebraic. This conclusion fails dramatically if S is only
assumed quasi-projective, as witnessed by the example of the graph of the exponential
function inside the affine plane. However, algebraicity still holds if Z is definable in
some o-minimal structure by a theorem of Peterzil and Starchenko (2009).

Theorem 2.5 (Peterzil–Starchenko). — Let S be a quasi-projective complex variety
and let Z ⊂ S be a closed analytic subset. If there exists an o-minimal structure
expanding Ran in which Z is definable, then Z is algebraic.

Since every closed analytic subset of a projective variety is Ran-definable, the classical
Chow theorem is a corollary of this o-minimal version.

2.5. O-minimal GAGA theorem

Recall that the classical GAGA theorem of Serre (1955) is the statement that,
if X is a proper complex algebraic variety and Xan denotes the associated analytic
space, then the categories of coherent sheaves Coh(X) and Coh(Xan) are equivalent.
Bakker, Brunebarbe, and Tsimerman (2018) prove a similar statement for de-
finable coherent sheaves. Let X be a definable analytic space. An OX -module F is
said to be locally finitely generated if there exist a finite cover of X by definable open
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sets Xi and surjections Oni
Xi
� F , and coherent if F is locally finitely generated and

so is the kernel of any map OnU → F |U for any definable open subset U ⊂ X . As
an analogue of Oka’s theorem, the sheaf OX is coherent, see Theorem 2.16 of loc. cit.
If X is an affine C-scheme of finite type, presented as Spec(C[x1, . . . , xn]/I), then the
pair Xdef = (X(C),Odef

Cn/IOdef
Cn) is a definable analytic space. Gluing these local models

yields a functor X  Xdef from C-schemes of finite type to definable analytic spaces
and a morphism g : (Xdef,OXdef)→ (X,OX) of locally ringed sites. Associating with a
coherent sheaf F on X the coherent definable sheaf F def = F ⊗g−1OX

OXdef , we obtain a
definabilisation functor Coh(X)→ Coh(Xdef). This construction extends to separated
algebraic spaces of finite type over C (simply called “algebraic spaces" henceforth) by
representing them as quotients of schemes by étale equivalence relations. Likewise,
there is an analytification functor X  X an from definable analytic spaces to analytic
spaces that induces a functor An: Coh(X )→ Coh(X an) on the level of coherent sheaves.
These functors fit into a commutative diagram:

AlgSp/C
(−)def

//

(−)an
&&

S-DefAnSp/C.

(−)an
ww

AnSp/C

It is not hard to prove that the functor An is faithful and exact, see Theorem 2.22 of
loc. cit. More subtle is the o-minimal GAGA theorem:

Theorem 2.6 (Bakker–Brunebarbe–Tsimerman). — For each algebraic space X, the
“definabilisation” functor Def : Coh(X) → Coh(Xdef) is exact, fully faithful, and its
essential image is stable under subobjects and subquotients.

By contrast with the classical GAGA theorem, the functor Def need not be essentially
surjective. For example, ifX = P1r{0,∞} all algebraic line bundles onX are trivial but
there are non-trivial definable line bundles on Xdef. Indeed, the complex local system V

with monodromy e2πiα on Xan can be trivialised on a finite union of overlapping sectors
and gives thus rise to a definable coherent sheaf F = V ⊗C OXdef . One checks that F
is trivial in the o-minimal structure Ralg if and only if α is rational and that, even in
the larger o-minimal structure Ran, a trivialisation only exists for real α.

A corollary of Theorem 2.6 that we will use repeatedly in the proof of Griffiths’s
conjecture is that the o-minimal Chow theorem also holds for algebraic spaces.

3. SIEGEL SETS AND DEFINABILITY OF ARITHMETIC
QUOTIENTS

The spaces Γ\D = Γ\G(R)/M that we encountered in section 1 as targets of period
maps are examples of arithmetic quotients. More generally, given a connected reductive



1170–12

linear algebraic group G over Q, we let G = G(R)+ denote the connected component
of the identity of its real locus and G(Q)+ the intersection G(Q) ∩ G. Let M ⊂ G

be a connected compact subgroup and Γ ⊂ G(Q)+ a neat arithmetic subgroup. By
“arithmetic” we mean that, with respect to some embedding G ↪→ GLn, the groups Γ
and G(Q)+ ∩GLn(Z) are commensurable and by “neat” that the eigenvalues of every
element of Γ generate a torsion-free subgroup of C×. Any arithmetic subgroup of G(Z)
contains a normal neat subgroup of finite index. Under these assumptions, the quotient
(3) SΓ,G,M = Γ\G/M
is a real analytic manifold. The main result of this section, stated as Theorem 3.4, is
that these arithmetic quotients carry a functorial structure of Ralg-definable manifold.
Since quotients by finite groups exist in the category of definable analytic spaces by
(Bakker, Brunebarbe, and Tsimerman, 2018, Prop. 2.38), it will follow that all
arithmetic quotients SΓ,G,M are Ralg-definable analytic spaces whether Γ is neat or not.

3.1. Siegel sets

A crucial tool in the proof of definability are Siegel sets, certain subsets of G that
enjoy finiteness properties with respect to the action of Γ. Their definition, which we
recall after Borel and Ji (2006), involves the following ingredients from group theory:

general group G an example for GLn

P parabolic Q-subgroup of G


∗ ∗ · · · ∗
0 ∗ · · · ∗
... ... . . . ∗
0 0 · · · ∗



NP unipotent radical of P


1 ∗ · · · ∗
0 1 · · · ∗
... ... . . . ∗
0 0 · · · 1



LP the Levi quotient P/UP


∗ 0 · · · 0
0 ∗ · · · 0
... ... . . . 0
0 0 · · · ∗


SP split center of LP same as above
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MP

⋂
χ : LP→Gm

kerχ2


±1 0 · · · 0
0 ±1 · · · 0
... ... . . . 0
0 0 · · · ±1



Set NP = NP (R), AP = SP (R)+, and MP = MP (R). For each maximal compact
subgroup K of G, there exists a unique real Levi subgroup LP,K of PR which is stable
under the Cartan involution associated with K. Letting AP,K and MP,K denote the
subgroups of LP,K(R) lifting AP and MP respectively, the group G decomposes as

G = NPAP,KMP,KK.

Besides, the characters of AP,K acting on the Lie algebra of NP form a root system. We
write ∆(AP,K , NP ) for the subset of simple roots and, given a real number t > 0, we set

(AP,K)t = {x ∈ AP,K | α(x) > t for all α ∈ ∆(AP,K , NP )}.

Definition 3.1. — Let (P, K) be a pair consisting of a parabolic Q-subgroup P of G
and a maximal compact subgroup K of G. A Siegel set associated with (P, K) is a
subset S ⊆ G of the form S = U × (AP,K)t ×W, where U ⊆ NP and W ⊆ MP,KK

are relatively compact open semialgebraic subsets. A Siegel set for the homogeneous
space G/M is the image under the projection map of a Siegel set of G associated with
some parabolic subgroup P and some maximal compact subgroup K containing M .

In the example of GLn, the parabolic subgroup of upper triangular matrices,
and the standard maximal compact subgroup K = On(R)+, simple roots are dif-
ferences of consecutive diagonal entries, and hence (AP,K)t consists of diagonal
matrices diag(x1, . . . , xn) such that xj/xj+1 > t for all j. For future reference, we
gather in the next theorem a few important properties of Siegel sets.

Theorem 3.2 (Borel, Orr). —
1. There exist finitely many Γ-conjugacy classes of parabolic Q-subgroups of G. Let-

ting P1, . . . ,Ps denote a set of representatives, there exist Siegel sets Si ⊂ G/M

associated with Pi and some K whose images in SΓ,G,M cover the whole space.

2. Given any two Siegel sets S1,S2, the set {γ ∈ Γ | γSi ∩Sj 6= ∅} is finite.

3. The image of any Siegel set of G′ by a morphism f : G′ → G of connected reduc-
tive algebraic linear groups over Q is contained in a finite union of translates by
elements of G(Q) of a Siegel set in G.

In a slightly different form, the first two statements are proved in (Borel, 1969,
Théorèmes 13.1 et 15.4). The last one is due to Orr (2018).

Example 3.3. — Let HZ be a free abelian group of finite rank. Siegel sets for the
symmetric space X = GLn(R)/On(R) of positive-definite quadratic forms on HR may
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be understood in terms of reduction theory. Namely, given a basis e = {e1, . . . , er}
of HZ and a real number C > 0, we say that a positive-definite symmetric bilinear
form b on HZ is (e, C)-reduced if the following three conditions hold:
a) |b(ei, ej)| < Cb(ei, ei) for all i, j;

b) b(ei, ei) < Cb(ej, ej) for all i < j;

c) ∏r
i=1 b(ei, ei) < C det(b).

Setting Je,C = {b ∈ X | b is (e, C)-reduced}, it follows from reduction theory that Je,C
is contained in a Siegel set of X and that any Siegel set is contained in some Je,C .
Moreover, if a bilinear form b is (e′, C ′)-reduced and e is a basis for which condition c)
holds for some C > 0, then there exists a constant C ′′ > 0, depending on e, C, e′, C ′

such that b is also (e, C ′′)-reduced.

3.2. Definability of arithmetic quotients

We claim that the quotient G/M and the projection G → G/M are semialgebraic.
Indeed, M ⊂ G is semialgebraic since every compact Lie subgroup of G may be realised
as the real points of an algebraic subgroup of G, and G/M is the orbit space for the
equivalence relation

R = {(g, g ·m) | g ∈ G, m ∈M} ⊂ G×G,

which is definably proper in Ralg since the multiplication G×G→ G is semialgebraic
and M is compact. The conclusion then follows from Theorem 2.4.

Theorem 3.4 (Bakker–Klingler–Tsimerman). — The real analytic manifold SΓ,G,M
can be endowed with a functorial structure of Ralg-definable manifold such that, for
each Siegel set S ⊂ G/M , the map π|S : S→ SΓ,G,M is Ralg-definable.

By “functorial” we mean that all real analytic maps (f, g) : SΓ′,G′,M ′ → SΓ,G,M
obtained from a morphism of connected reductive algebraic Q-groups f : G′ → G
and an element g ∈ G(Q) such that f(Γ′) ⊆ Γ and f(M ′) ⊆ gMg−1 by mapping
Γ′h′M ′ to Γf(h′)gM are Ralg-definable. Bakker, Klingler, and Tsimerman (2018)
also prove, but we shall not use it here, that the structure of Ran-definable manifold
on SΓ,G,M extending the Ralg-structure from Theorem 3.4 agrees with the one induced
by its Borel–Serre compactification, which is a real analytic variety with corners.

Proof of Theorem 3.4. — Throughout, “definable” means Ralg-definable. Thanks to
the first part of Theorem 3.2, there exist finitely many Siegel sets Si whose images
in SΓ,G,M cover the whole space. Letting cl(Si) denote the closure of Si, which is a
semialgebraic subset of G/M , one can realise SΓ,G,M as the quotient of the definable
set ∐s

i=1 cl(Si) by the equivalence relation

x ∈ Si ∼R y ∈ Sj if and only if there exists γ ∈ Γ such that y = γx.
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The latter is definably proper by the second part of Theorem 3.2. By Theorem 2.4, the
quotient SΓ,G,M is hence a definable manifold and all the maps π|Si

: Si → SΓ,G,M are
definable as well. Now, given any Siegel set S ⊂ G/M , by the finiteness of Γ-conjugacy
classes there exists γ ∈ Γ such that γS is associated with one of the parabolic sub-
groups Pi and, replacing Si by a bigger Siegel set if necessary, we may assume that γS
is contained in Si. Definability of π|S : S→ SΓ,G,M then follows from writing it as
the composite of multiplication by γ, the inclusion γS ⊂ S, and the projection π|Si

.
We now turn to functoriality. For each g ∈ G(Q), let Int(g) : G → G denote the
conjugation by g. Since all morphisms of arithmetic quotients as above factor as
(f, g) = (Int(g−1) ◦ f, 1) ◦ (Int(g), g) and (Int(g), g) is definable, it suffices to treat
the case of morphisms induced by a map f : G′ → G such that f(Γ′) ⊂ Γ. Cover-
ing SΓ′,G′,M ′ by the images of Siegel sets S′i of G′, we are reduced to showing that the
composite S′i

f−→ G
π−→ SΓ,G,M is definable. The first map is semialgebraic and, by

the third part of Theorem 3.2, the definable subset f(S′i) ⊂ G lies in a finite union of
Siegel sets. One then concludes using the fact, already proved, that the restriction of π
to any Siegel set is definable.

4. DEFINABILITY OF PERIOD MAPS

In this section, we sketch the proof of the definability of period maps following
Bakker, Klingler, and Tsimerman (2018). Here is the precise statement:

Theorem 4.1 (Bakker–Klingler–Tsimerman). — Let S be a smooth connected
quasi-projective complex variety and V a polarised variation of pure Hodge structures
of weight k on S. The associated period map Φ: S → SΓ,G,M is Ran,exp-definable
relatively to the Ran,exp-structures extending the real algebraic structure on S and the
semialgebraic structure from Theorem 3.4 on SΓ,G,M .

The proof of Theorem 4.1 relies on deep results describing the asymptotic behaviour
of period maps near the boundary, namely the nilpotent and the SL2-orbit theorems of
Schmid (1973) along with the estimates for the Hodge form that Kashiwara (1985)
and Cattani, Kaplan, and Schmid (1986) derive from them. We start by briefly
summarising these results in the next section.

Throughout, we use the following notation:
— ∆ ⊂ C is the open unit disc and ∆∗ = ∆ r {0} the punctured disc;

— for z ∈ H in the upper half-plane, we write x = Re(z) and y = Im(z);

— e : H→ ∆∗ is the uniformisation map given by z 7→ exp(2πiz);

— p : Hn → (∆∗)n is the n-th cartesian power of e;

— SH = {z ∈ H | 0 < x < 1, y > 1} is the standard Siegel set in H;
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— Σn = {(z1, . . . , zn) ∈ Hn | 0 < xi < 1, y1 ≥ . . . ≥ yd > 1}.

4.1. Results from asymptotic Hodge theory

We keep notation from section 1.3, namely diagram (2). Given a polarised variation
of pure Hodge structures V of weight k on (∆∗)n, set HZ = H0(Hn, p∗VZ) and let qZ

denote the bilinear form on HZ induced by the polarisation. Consider the algebraic
group G = Aut(HQ, qQ), its Lie algebra g, and the exponential map exp: gC → G(C).
By a theorem of Borel, see e.g. (Schmid, 1973, Lemma 4.5), the local system VZ has
quasi-unipotent monodromy at infinity, meaning that the images T1, . . . , Tn ∈ G(Z)
under the monodromy representation of counterclockwise simple loops around the var-
ious punctures are quasi-unipotent. Up to replacing (∆∗)n with a finite étale cover, we
may assume that all the Ti are unipotent, so that Ti = exp(Ni) for commuting nilpotent
elements N1, . . . , Nn ∈ g. By design, the map Ψ̃ : Hn → Ď defined by

Ψ̃(z1, . . . , zn) = exp
(
−

n∑
j=1

zjNj

)
· Φ̃(z1, . . . , zn)

is invariant under deck transformations, and hence descends to a map Ψ: (∆∗)n → Ď.

Theorem 4.2 (Schmid’s nilpotent orbit theorem). — The map Ψ extends holomor-
phically across the punctures. The value F∞ = Ψ(0) ∈ Ď is called the limiting Hodge
filtration. Moreover, the nilpotent orbit exp(∑n

j=1 zjNj) · F∞ lies in D for Im(zj) � 0
and is asymptotic to the original period map.

In more geometric terms, the nilpotent orbit theorem says that the Hodge filtra-
tion extends holomorphically to Deligne’s canonical extension of the flat vector bun-
dle VO to ∆n, whose characteristic property is that in any local frame near the punc-
tures the connection matrix has at worst logarithmic poles with nilpotent residues.
According to the SL2-orbit theorem, which we shall only mention here in dimen-
sion one, the nilpotent orbit is in turn well approximated by a copy of the upper
half-plane H = SL2(R)/SO2(R) equivariantly embedded into D = G(R)/M by means
of a morphism of algebraic groups SL2 → G, see (Schmid, 1973, Theorem 5.13).

In general, there is no reason why the limiting Hodge filtration should lie in D and
give thus rise to a polarised pure Hodge structure on HZ. Nevertheless, it follows
from the SL2-orbit theorem in one variable that F∞ fits into a mixed Hodge struc-
ture. Recall that this is the data of a finite increasing filtration W• of HQ, called the
weight filtration, and a finite decreasing filtration F • of HC that endows each graded
piece grW` = W`/W`−1 with a rational pure Hodge structure of weight `. A splitting
of a mixed Hodge structure is a bigrading HC = ⊕

r,s I
r,s such that W` = ⊕

r+s≤` I
r,s

and F p = ⊕
r≥p I

r,s. By a result of Deligne, all mixed Hodge structures admit a unique
splitting satisfying Ir,s ≡ Is,r modulo ⊕a<r,b<r I

a,b. Whenever the equality Ir,s = Is,r

holds, we call them R-split. There is a canonical way to attach to any mixed Hodge
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structure an R-split one. Namely, if gl(HR)a,b ⊂ gl(HR) denotes the set of those X sat-
isfying XC(Ir,s) ⊂ Ir+a,r+b, then there exists a unique element δ ∈⊕a,b<0 gl(HR)a,b such
that (W, exp(−iδ)F ) is R-split (Cattani, Deligne, and Kaplan, 1995, Prop. 2.20).

Let N be a nilpotent endomorphism of HQ. Associated with N is a finite increas-
ing filtration W (N)• of HQ which is uniquely characterised by N(W (N)`) ⊂ W (N)`−2

and the condition that N ` : grW (N)
` → grW (N)

−` is an isomorphism for all ` ≥ 0. We
say that W (N) is centred at zero. Let C = {∑n

j=1 λjNj | λi ∈ R>0} be the open con-
vex cone of gR generated by the logarithms of the monodromy and, for each sub-
set J ⊂ {1, . . . , n}, consider the facet of C given by CJ = {∑j∈J λjNj | λj ∈ R>0}. By
a result of Cattani and Kaplan (1982), all elements N ∈ CJ define the same weight
filtration, which will be denoted by W (CJ). In particular, as the cones CJ contain
rational elements, all these filtrations are defined over Q. An important consequence
of the SL2-orbit theorem in one variable, along with this independence of the weight
filtration, is the following:

Theorem 4.3 (Cattani–Kaplan–Schmid). — The triple (HZ,W (CJ)[−k], F∞) forms
a mixed Hodge structure.

Moreover, the various weight filtrations are compatible with each other when J runs
through a descending chain of subsets: writing t = {1, . . . , t} and W t = W (Ct)[−k] for
each 1 ≤ t ≤ n, allN ∈ Ct preserveW t−1 and the mapN ` : grW t

`+jgrW t−1
j → grW t

−`+jgrW t−1
j

is an isomorphism for all j and `. Let (Wn, F ) be the R-split mixed Hodge structure
canonically associated with (Wn, F∞) and let HC = ⊕

r,s I
r,s be Deligne’s splitting of

the former. Using the compatibility of the filtrations, one can refine it into a splitting

(4) HC =
⊕

r,s1,...,sn

Ir,s1,...,sn

such that F p = ⊕
r≥p I

r,s1,...,sn and W t
` = ⊕

r+st≤` I
r,s1,...,sn . As all weight filtrations are

rational, there is also a multigrading

(5) HQ =
⊕

(s1,...,sn)∈Zn

Js1,...,sn , Js1,...,sn = grWn

sn
grWn−1

sn−1 · · · grW1

s1

such that W t
` = ⊕

st≤` J
s1,...,sn for all j and s. Note that Js1,...,sn and J−s1,...,−sn

have the same dimension as all weight filtrations are centred at zero. Besides, since
the group G(C) acts holomorphically and transitively on Ď, after maybe shrinking
the polydisc, we can write ψ(t) = g(t)F for a holomorphic function g : ∆n → G(C)
with g(0) = 1. We make the following choice. Set ga,b = {X ∈ gC | X(Ir,s) ⊂ Ir+a,s+b}.
Then gC/bC = ⊕

a<0 g
a,b and the exponential induces a diffeomorphism onto a neigh-

bourhood of F in Ď, so there exists a unique holomorphic map v : ∆n →⊕
a<0 g

a,b such
that g = exp(v(t)). Writing γ(z) = exp(∑ ziNi)g(p(z)), we have Φ̃(z) = γ(z)F .

Each z ∈ Hn gives rise to the Hodge form hz : HC ×HC → C defined by

hz(u, v) = qC(Czu, v),
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where Cz is the Weil operator with respect to the Hodge structure that is Φ̃(z). We
shall also write hz(u) = hz(u, u). A crucial ingredient in the proof of definability of
period maps is the description of the asymptotic behaviour of hz when u lies in one of
the subspaces of (5). Given two functions f, g, we write f � g if there exists a real
number C > 0 such that |f | ≤ Cg and f ∼ g if both f � g and g � f hold.

Theorem 4.4 (Hodge form estimates). — Let u ∈ Js1,...,sn

C . As a function of z ∈ Σn,
the Hodge norm satisfies the following estimates:
a) hz(u) ∼ (y1/y2)s1 · · · (yn−1/yn)sn−1ysn

n ;

b) hz(ezNu) ∼ (y1/y2)s1 · · · (yn−1/yn)sn−1ysn
n ;

c) hz(γ(z)u) ∼ hz(ezNu).

This is the combination of Theorems 3.4.1 and 3.4.2 of Kashiwara (1985) or, alter-
natively, Theorem 5.21 of Cattani, Kaplan, and Schmid (1986).

4.2. A finiteness theorem

The estimates from Theorem 4.4 are used to derive the following finiteness result:

Theorem 4.5 (Bakker–Klingler–Tsimerman). — The image Φ̃(Sn
H) lies in a finite

union of Siegel sets of D.

In dimension one, this theorem is due to Schmid (1973), who proves in Corollary 5.29
of loc. cit. the stronger statement that a single Siegel set does the job as a consequence
of his SL2-orbit theorem. Bakker, Klingler, and Tsimerman (2018) reduce the
proof of Theorem 4.5 to this case by an ingenious restriction to curves argument.

Proof. — Since Sn
H is the union of the images of Σn by the symmetric group, it suf-

fices to prove the statement for Φ̃(Σn). Let X = GL(HR)/O(HR) be the symmetric
space of positive-definite quadratic forms on the real vector space HR. The embed-
ding G ↪→ GL(VQ) induces a map ι : D → X that sends a point z ∈ D to the restric-
tion of the Hodge form hz to HR. As the preimage of any Siegel set of X lies in a
finite union of Siegel sets of D, we are reduced to showing that ι(Φ̃(Σn)) is contained
in finitely many Siegel sets of X. Taking Example 3.3 into account, this results from:

Theorem 4.6. — There exists a basis e of HQ and a real number C > 0 such that the
Hodge form hz is (e, C)-reduced for all z ∈ Σn.

Let O be the ring of functions on Σn obtained by pullback via p : Hn → (∆∗)n of real
restricted analytic functions on ∆n. We denote by O[x, y, y−1] the ring of polynomials
in the variables x1, . . . , xn, y1, . . . , yn, y

−1
1 , . . . , y−1

n with coefficients in O, and by O(x, y)
its fraction field. We say that f ∈ O(x, y) is roughly monomial if f ∼ ys1

1 · · · ysn
n for

some integers si, and roughly polynomial if f can be written as the quotient g/h of
some g ∈ O[x, y, y−1] and some roughly monomial h ∈ O(x, y). A useful property of
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this class of functions is that, if f is roughly polynomial and g is roughly monomial,
one can test whether f � g on all of Σn by restricting to curves of the form

(6) α1z1 + β1 = α2z2 + β2 = · · · = αn0zn0 + βd0 , zn0+1 = ζn0+1, . . . , zd = ζn

for some integer 1 ≤ n0 ≤ n, some elements ζn0+1, . . . , ζn ∈ H, some positive rational
numbers α1, . . . , αn0 ∈ Q>0, and some real numbers β1, . . . , βn0 ∈ R, as it is proved in
Lemma 4.5 of Bakker, Klingler, and Tsimerman (2018).

Proposition 4.7. — For any u, v ∈ HC, the Hodge form hz(u, v) belongs to O(x, y)
and is roughly polynomial. Moreover, hz(u) is roughly monomial.

Proof. — Set b(u, v) = qC(u, v). Let {wi} be a basis of HC adapted to the splitting (4)
and ordered in such a way that wi ∈ Iri,s

i
1,...,s

i
n for a non-decreasing sequence ri. Let Kj

denote the linear span of w1, . . . , wj and wdetKj = w1∧· · ·∧wj. If w̃i is an hz-orthogonal
basis obtained from γ(z)wi by the Gram–Schmidt process, then

b(w̃i) = b(γ(z)wdetKi)
b(γ(z)wdetKi−1) , b(u, w̃i) = b(γ(z)wdetKi ∧ u, γ(z)wdetKi)

b(γ(z)wdetKi−1) .

Note that both numerators and denominators lie in O[x, y], since γ(z) is of the
form exp(zN)g(p(z)) with g a holomorphic function on the whole disc ∆n and exp(zN)
a polynomial in z1, . . . , zn. Now, if u = ∑

ũi and v = ∑
ṽi are the expressions in the

basis w̃i, the Hodge form is given by

hz(u, v) =
∑
i

i2ri−k b(u, w̃i)b(w̃i, v)
b(w̃i)

,

and hence belongs to O(x, y). By the Hodge form estimates, hz(u) is roughly monomial.
Similarly, hz(γ(z)u) lies in O(x, y) and is roughly monomial. From this it follows
that b(w̃i) is also roughly monomial, and finally that hz(u, v) is roughly polynomial.

Let e = {e1, . . . , es} be a basis of HQ adapted to the decomposition ⊕
Js1,...,sn .

As Js1,...,sn and J−s1,...,−sn have the same dimension, the first estimate in Theorem 4.4
shows that there exists a constant C1 > 0 such that ∏i hz(ei) < C1 for all z ∈ Σn.
In other words, condition c) in the definition of (e, C1)-reduced forms holds. Up to
reordering the basis and changing C1 if necessary, we may also assume that condition b)
holds as well, that is, hz(ei) < C1hz(ej) for all i < j and all z ∈ Σn. Now recall from
Theorem 3.2 that the image under ι of any Siegel set of D is contained in finitely many
Siegel sets of X. Combining this with the one-dimensional case of Theorem 4.5, we
get that ι(Φ̃(τ)) lies in a finite union of Siegel sets of X for any curve τ ⊂ Σn of the
form (6). Taking Example 3.3 into account, each of them is in turn contained in the
set of reduced forms with respect to a suitable basis and constant. As all the elements
of ι(Φ̃(τ)) satisfy condition c) with respect to the basis e, invoking Example 3.3 again,
there exists a constant Cτ > 0 such that all elements of ι(Φ̃(τ)) are (e, Cτ )-reduced.
In particular, hz(ei, ej)� hz(ei) for all i and j. Since hz(ei, ej) is roughly polynomial
and hz(ei) is roughly monomial, it follows from the criterion of restriction to curves
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that there exists a constant C2 > 0 such that |hz(ei, ej)| < C2hz(ei) for all z ∈ Σn.
Setting C = max(C1, C2), all Hodge forms hz are therefore (e, C)-reduced.

4.3. Proof of Theorem 4.1

Throughout, by “definable” we mean definable with respect to the o-minimal struc-
ture Ran,exp. Set n = dimS. By resolution of singularities, there exists a smooth pro-
jective variety S containing S as the complement of a simple normal crossing divisor.
Locally for the analytic topology, S ⊂ S looks like (∆∗)r×∆n−r inside ∆n. Covering S
by finitely many open subsets of this shape and allowing some factors with trivial mon-
odromy if necessary, it suffices to prove that the local period map Φ: (∆∗)n → SΓ,G,M is
definable. We assume, as we may, that the local system VZ has unipotent monodromy
at infinity. In the commutative diagram

Sn
H ⊂ Hn Φ̃

//

p=en

��

G/M

π

��

(∆∗)n Φ
// SΓ,G,M ,

the map p|Sn
H

: Sn
H → (∆∗)n is definable since the restriction of exp(2πi·) to SH is so.

As the punctured polydisc is covered by the images of Sn
H and a translate, we are

reduced to showing that π ◦ Φ̃|Sn
H

: Sn
H → SΓ,G,M is definable. That Φ̃|Sn

H
: Sn

H → G/M

is definable follows from the nilpotent orbit theorem, according to which

Φ̃(z1, . . . , zd) = exp
(

n∑
j=1

zjNj

)
·Ψ(p(z1, . . . , zd)).

for a holomorphic map Ψ: ∆n → Ď. Indeed, p|Sn
H

: Sn
H → (∆∗)n is definable, Ψ is

the restriction to a relatively compact set of a real analytic map, the action of G(R)
on D is definable (for it is the restriction to the semialgebraic subset D ⊂ Ď of the
algebraic action of G(C) on Ď), and exp(∑ zjNj) is a polynomial in the variables zj as
all Nj are nilpotent. Now, Φ̃(Sn

H) is contained in finitely many Siegel sets S ⊂ G/M

by Theorem 4.5 and all the maps π|S : S → SΓ,G,M are definable by Theorem 3.4,
so π ◦ Φ̃|Sn

H
is definable. This finishes the proof.

5. ALGEBRAICITY OF HODGE LOCI

Recall the Hodge locus HL(S,V) from section 1.4. In the case where the variation
of Hodge structures V arises from a family of smooth projective varieties, the Hodge
conjecture predicts that HL(S,V) is a countable union of closed irreducible algebraic
subvarieties of S. By a celebrated result of Cattani, Deligne, and Kaplan (1995),
this conclusion holds unconditionally and for all variations of Hodge structures, whether
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they have geometric origin or not. As a corollary of the definability of period maps,
Bakker, Klingler, and Tsimerman (2018) obtain a new proof of this theorem.

Theorem 5.1. — Let V be a polarised variation of pure Hodge structures of weight k on
a smooth connected quasi-projective complex variety S. The Hodge locus HL(S,V) ⊂ S

is a countable union of closed irreducible algebraic subvarieties.

Proof. — Let Φ: S → SΓ,G,M be the period map associated with the variation of Hodge
structures. Since HL(S,V) is a union of preimages under Φ of Mumford–Tate subvari-
eties of SΓ,G,M , it suffices to prove that the preimageW = Φ−1(Y ) of such a Y ⊂ SΓ,G,M
is algebraic. Observe that Y is itself of the form SΓ′,G′,M ′ , and hence Ralg-definable by
Theorem 3.4. It then follows from the definability of the period map (Theorem 4.1)
that the subset W ⊂ S is Ran,exp-definable. As it is also a complex analytic subvariety,
the o-minimal Chow theorem 2.5 implies that W is algebraic.

6. A PROOF OF GRIFFITH’S CONJECTURE

Around fifty years ago, Phillip A. Griffiths (1970a) conjectured that period maps
have quasi-projective images and proved it when S is compact. Later Sommese (1978)
showed that, up to a proper modification, the image is algebraic. The main result of
Bakker, Brunebarbe, and Tsimerman (2018) is the general case of this conjecture.

Theorem 6.1 (Bakker–Brunebarbe–Tsimerman). — Let S be a smooth connected
quasi-projective complex variety and Φ: S → SΓ,G,M a period map. There exists a
unique dominant morphism of complex algebraic varieties f : S → T and a closed
immersion ι : T an → SΓ,G,M of analytic spaces such that Φ factors as:

San Φ
//

fan
""

SΓ,G,M .

T an
, �

ι

::

Moreover, the variety T is quasi-projective.

Let S be a smooth compactification of S by a simple normal crossing divisor D and
let S ⊂ S ′ ⊂ S denote the partial compactification obtained by adding those irreducible
components of D along which the variation of Hodge structures has finite monodromy.
Since the period map extends to a proper map Φ: S ′ → SΓ,G,M by (Phillip A. Grif-
fiths, 1970b, Prop. 9.11), the first part of Theorem 6.1 results from the following
algebraisation result for definable images of algebraic spaces.

Theorem 6.2 (Bakker–Brunebarbe–Tsimerman). — Let X be a (non-necessarily re-
duced) algebraic space andM a definable analytic space. Any proper definable analytic
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map Φ: Xdef →M factors uniquely as ι ◦ fdef for a proper map f : X → Y of algebraic
spaces such that OY → f∗OX is injective and a closed immersion ι : Y def ↪→M.

Sketch of proof. — It suffices to treat the case where X is reduced and irreducible.
Since Φan is proper, its image is a closed analytic subspace of Man by Remmert’s
proper mapping theorem. As it is also definable, it is the analytification of a unique
definable analytic subspace Y ⊂ M. Note that the map Φ: Xdef → Y is surjective on
points. By the o-minimal Chow theorem, to algebraize it it is enough to algebraize Y .

The first step of the proof consists in reducing to the case where Φ is a proper
modification, i.e. an isomorphism outside a strict closed definable analytic subspace
of Y which is called the exceptional locus. For this, we let Hilb(X) be the Hilbert
scheme of proper algebraic subspaces of X. Since Φ is proper and definable, its fibres
are algebraic spaces by the o-minimal Chow theorem. Let H ⊂ Hilb(X) denote the
union of the components parameterising a general fibre of Φ. Over a definable Zariski
open subset U of Y , the map Hdef → Y admits a section s and s(U) is a constructible
definable analytic subset of Hdef, for it is a closed subset inside the open set of Hdef

consisting of those subspaces that do not meet Φ−1(Y r U). The closure cl(s(U)) is
hence a closed definable analytic subspace of Hdef, which is then algebraic by o-minimal
Chow. Call it H ′. By Lemma 6.4 below, the map (H ′)an → Yan is the analytification
of a definable map (H ′)def → Y and, since (H ′)def maps properly and surjectively to Y ,
we may replace X with H ′.

Assuming that Φ: Xdef → Y is a modification, the proof then proceeds by induction
on the dimension of X. On the one hand, the inverse image of the reduced excep-
tional locus of Φ is the definabilisation W def of an algebraic subspace W of X by the
o-minimal Chow theorem and, on the other hand, the map Φ|Wdef : W def → Φ(W def) is
algebraic by induction, say of the form gdef : W def → Zdef for a morphism of algebraic
spaces g : W → Z, as pictured in the diagram

Xdef Φ
// Y

W def gdef
//

⊂

Zdef.

⊂

For each integer n ≥ 1, let Wn denote the n-th order thickening of W in X. We claim
that the map W def

n → Φ(W def
n ) is algebraic. Indeed, proceeding by induction, this

follows from the proposition below, which is proved using the o-minimal GAGA.

Proposition 6.3. — Let g : W → Z be a proper dominant map of algebraic spaces.
Assume we are given an algebraic first order thickening W → W ′, a definable first order
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thickening Zdef → Z ′, and a definable analytic map h : (W ′)def → Z ′ such that

W def

gdef

��

// (W ′)def

h
��

Zdef // Z ′

commutes. Then there exists a unique proper dominant map g′ : W ′ → Z ′′ of algebraic
spaces, a first order algebraic thickening Z → Z ′′, and a first order definable thicken-
ing (Z ′′)def → Z ′ such that the following diagrams commute:

W

g

��

// W ′

g′′

��

Z // Z ′′

(W ′)def

(g′)def
$$

h
// Z ′

(Z ′′)def

<<

Let X̂W = colimWn denote the formal completion of X along W . Since all the
morphismsW def

n → Φ(W def
n ) are algebraic, X̂W maps to a formal algebraic space Z. The

map X̂W → Z is a formal modification in the sense of (Artin, 1970, Definition 1.7).
By Artin’s algebraisation theorem, see Theorem 3.1 of loc. cit., there exists a morphism
of algebraic spaces f : X → Y with analytification Φan : Xan → Yan. It only remains to
show that Y def = Y , which follows immediately from Lemma 6.4 below.

Lemma 6.4. — Let X ,Y ,Z be definable analytic spaces and suppose we are given
commutative diagrams of solid arrows

X h
//

g

��

Y

i��

Z

X an

gan

��

han
// Yan

ι
||

Zan

such that h is surjective on points and OY → h∗OX is injective. Then there exists a
dashed arrow i such that ian = ι.

This concludes the proof of Theorem 6.2.

Once that we know that T exists, the proof that it is a quasi-projective variety
exploits the fact that SΓ,G,M carries the definable Q-line bundle

L =
⊗
p

det(F p).

Let LTdef denote its restriction to T def ↪→ SΓ,G,M . After possibly enlarging S, we may
assume that the dominant map f : S → T is proper, so that it preserves coherent
sheaves. Using Deligne’s canonical extension and the usual GAGA theorem, one shows
that LS = ⊗

p det(F p) is an algebraic Q-line bundle over S. As LTdef embeds into
the definabilisation of the coherent sheaf f∗LS, the statement about stability under
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subobjects in the o-minimal GAGA theorem implies that LTdef comes from an alge-
braic Q-line bundle LT . It remains to prove that LT is ample. For this, one considers
the subset Γvan(T, LmT ) ⊂ Γ(T, LmT ) of algebraic sections vanishing at the boundary,
i.e. that pull back to a section of Lm

S
(−D). Using Griffiths’s computation of the cur-

vature of the Hodge metric on LT along with the fact that this metric has a moderate
behaviour at infinity, it is not hard to show that Γvan(T, LmT ) yields a generic embedding.
More precisely, on a smooth compactification by a simple normal crossing divisor of a
desingularisation of T , Deligne’s canonical extension of LT is nef and big, and hence
sections vanishing at the boundary of some power of LT provide a generic embedding.
To prove that Γvan(T, LmT ) actually separates points and tangent vectors everywhere, the
authors perform a fine induction on the dimension of T that relies crucially on Fujita’s
vanishing theorem, see (Bakker, Brunebarbe, and Tsimerman, 2018, Theorem
6.2).
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